Skip to main content
Log in

Nonlinear thermal buckling analyses of functionally graded circular plates using higher-order shear deformation theory with a new transverse shear function and an enhanced mesh-free method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This study presents nonlinear buckling analyses of functionally graded (FG) circular plates in thermal environments using a mesh-free method. The thermal buckling response is formulated based on higher-order shear deformation plate theory in which a new transverse shear function is incorporated to better represent the displacement fields. An enhanced mesh-free radial point interpolation method (RPIM) in which the shape functions are constructed without any fitting parameters by virtue of the radial basis function in a compactly supported form is developed and utilized to explore the thermal buckling behavior. A radial basis function in a compactly supported form is proposed and included in the RPIM. Two types of FG circular plates with different FGM orientation, i.e., metal–ceramic FG circular plates and ceramic–metal FG circular plates, are considered in the analyses. The effectiveness and accuracy of the enhanced RPIM based on the higher-order shear deformation theory is first confirmed by simulating a numerical example found in the literature and comparing the results with the analytical solutions. Detailed parametric studies are then performed to investigate the effects of the volume fraction, plate thickness-to-radius ratio and metallic surface temperature on the critical buckling temperatures of FG circular plates subjected to various through-thickness temperature distributions. Results demonstrate that the enhanced mesh-free RPIM based on the higher-order shear deformation plate theory with the proposed transverse shear function can effectively predict the thermal buckling responses of FG circular plates, and that the volume fraction, plate thickness-to-radius ratio, bottom surface temperature and FGM orientation have considerable effects on the critical buckling temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chareonsuk, J., Vessakosol, P.: Numerical solutions for functionally graded solids under thermal and mechanical loads using a high-order control volume finite element method. Appl. Therm. Eng. 31, 213–227 (2011)

    Article  Google Scholar 

  2. Koizumu, K.: The concept of FGM, ceramic transactions. Funct. Grad. Mater. 34, 3–10 (1993)

    Google Scholar 

  3. Swaminathan, K., Sangeetha, D.M.: Thermal analysis of FGM plates: a critical review of various modeling techniques and solution methods. Compos. Struct. 160, 43–60 (2017)

    Article  Google Scholar 

  4. Vel, S.S., Batra, R.C.: Exact solution for thermoelastic deformations of functionally graded thick rectangular plates. AIAA J. 40, 1421–1433 (2002)

    Article  Google Scholar 

  5. Ootao, Y., Tanigawa, Y.: Three-dimensional solution for transient thermal stresses of functionally graded rectangular plate due to nonuniform heat supply. Int. J. Mech. Sci. 47, 1769–1788 (2005)

    Article  MATH  Google Scholar 

  6. Yang, J., Huang, X.L.: Nonlinear transient response of functionally graded plates with general imperfections in thermal environments. Comput. Methods Appl. Mech. Eng. 196, 2619–2630 (2007)

    Article  MATH  Google Scholar 

  7. Alibeigloo, A.: Exact solution for thermo-elastic response of functionally graded rectangular plates. Compos. Struct. 92, 113–121 (2010)

    Article  Google Scholar 

  8. Sburlati, R., Bardella, L.: Three-dimensional elastic solutions for functionally graded circular plates. Eur. J. Mech. A/Solids 30, 219–235 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, X.Y., Li, P.D., Kang, G.Z., Pan, D.Z.: Axisymmetric thermo-elasticity field in a functionally graded circular plate of transversely isotropic material. Math. Mech. Solids 18, 464–475 (2012)

    Article  Google Scholar 

  10. Jabbari, M., Shahryari, E., Haghighat, H., Eslami, M.R.: An analytical solution for steady state three dimensional thermoelasticity of functionally graded circular plates due to axisymmetric loads. Eur. J. Mech. A/Solids 47, 124–142 (2014)

    Article  MathSciNet  Google Scholar 

  11. Behravan, R.A.: Thermo-elastic analysis of functionally graded circular plates resting on a gradient hybrid foundation. Appl. Math. Comput. 256, 276–298 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 47, 663–684 (2000)

    Article  MATH  Google Scholar 

  13. Jabbari, M.: General solution for mechanical and thermal stresses in a functionally graded hollow cylinder due to nonaxisymmetric steady-state loads. J. Appl. Mech. 70, 111–118 (2003)

    Article  MATH  Google Scholar 

  14. Na, K.S., Kim, J.H.: Nonlinear bending response of functionally graded plates under thermal loads. J. Therm. Stress. 29, 245–261 (2006)

    Article  Google Scholar 

  15. Tahani, M., Mirzababaee, S.M.: Non-linear analysis of functionally graded plates in cylindrical bending under thermomechanical loadings based on a layerwise theory. Eur. J. Mech. A/Solids 28, 248–256 (2009)

    Article  MATH  Google Scholar 

  16. Alibeigloo, A.: Three-dimensional semi-analytical thermo-elasticity solution for a functionally graded solid and an annular circular plate. J. Therm. Stress. 35, 653–676 (2012)

    Article  Google Scholar 

  17. Fallah, F., Nosier, A.: Nonlinear behavior of functionally graded circular plates with various boundary supports under asymmetric thermo-mechanical loading. Compos. Struct. 94, 2834–2850 (2012)

    Article  Google Scholar 

  18. Bhandari, M., Purohit, K.: Response of functionally graded material plate under thermomechanical load subjected to various boundary conditions. Int. J. Met. 2015, Article no. 416824 (2015)

  19. Javaheri, R., Eslami, M.R.: Thermal buckling of functionally graded plates based on higher order theory. J. Therm. Stress. 25, 603–625 (2002)

    Article  Google Scholar 

  20. Liew, K.M., Yang, J., Kitipornchai, S.: Thermal post-buckling of laminated plates comprising FGM with temperature-dependent properties. Trans. ASME J. Appl. Mech. 71, 839–850 (2004)

    Article  MATH  Google Scholar 

  21. Woo, J., Merguid, S.A., Stranart, J.C., Liew, K.M.: Thermomechanical postbuckling analysis of moderately thick functionally graded plates and shallow shells. Int. J. Mech. Sci. 47, 1147–1171 (2005)

    Article  MATH  Google Scholar 

  22. Park, J.S., Kim, J.H.: Thermal postbuckling and vibration analyses of functionally graded plates. J. Sound Vib. 289, 77–93 (2006)

    Article  MATH  Google Scholar 

  23. Shariat, B.A.S., Eslami, M.R.: Thermal buckling of imperfect functionally graded plates. Int. J. Solids Struct. 43, 4082–4096 (2006)

    Article  MATH  Google Scholar 

  24. Shen, H.S.: Thermal postbuckling behavior of shear deformable FGM plates with temperature-dependent properties. Int. J. Mech. Sci. 49, 466–478 (2007)

    Article  Google Scholar 

  25. Matsunaga, H.: Thermal buckling of functionally graded plates according to a 2D higher-order deformation theory. Compos. Struct. 90, 76–86 (2009)

    Article  Google Scholar 

  26. Van Tung, H., Duc, N.D.: Nonlinear analysis of stability for functionally graded plates under mechanical and thermal loads. Compos. Struct. 92, 1184–1191 (2010)

    Article  Google Scholar 

  27. Duc, N.D., Van Tung, H.: Mechanical and thermal postbuckling of higher order shear deformable functionally graded plates on elastic foundations. Compos. Struct. 93, 2874–2881 (2011)

    Article  Google Scholar 

  28. Bouazza, M., Tounsi, A., Adda, B.E.A.: Buckling response of thick functionally graded plates. J. Mater. Eng. Struct. 1, 137–145 (2014)

    Google Scholar 

  29. Zhang, D.G., Zhou, H.M.: Mechanical and thermal post-buckling analysis of FGM rectangular plates with various supported boundaries resting on nonlinear elastic foundations. Thin-Walled Struct. 89, 142–151 (2015)

    Article  Google Scholar 

  30. Lee, Y.H., Bae, S.I., Kim, J.H.: Thermal buckling behavior of functionally graded plates based on neutral surface. Compos. Struct. 137, 208–214 (2016)

    Article  Google Scholar 

  31. Taczała, M., Buczkowski, R., Kleiber, M.: Nonlinear buckling and post-buckling response of stiffened FGM plates in thermal environments. Compos. Part B Eng. 109, 238–247 (2017)

    Article  Google Scholar 

  32. Ma, L.S., Wang, T.J.: Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings. Int. J. Solids Struct. 40, 3311–3330 (2003)

    Article  MATH  Google Scholar 

  33. Najafizadeh, M.M., Heydari, H.R.: Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory. Eur. J. Mech. A/Solids 23, 1085–1100 (2004)

    Article  MATH  Google Scholar 

  34. Najafizadeh, M.M., Hedayati, B.: Refined theory for thermoelastic stability of functionally graded circular plates. J. Therm. Stress. 27, 857–880 (2004)

    Article  Google Scholar 

  35. Prakash, T., Ganapathi, M.: Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method. Compos. Part B Eng. 37, 642–649 (2006)

    Article  Google Scholar 

  36. Saidi, A.R., Baferani, A.H.: Thermal buckling analysis of moderately thick functionally graded annular sector plates. Compos. Struct. 92, 1744–1752 (2010)

    Article  Google Scholar 

  37. Khorshidvand, A.R., Jabbari, M., Eslami, M.R.: Thermoelastic buckling analysis of functionally graded circular plates integrated with piezoelectric layers. J. Therm. Stress. 35, 695–717 (2012)

    Article  Google Scholar 

  38. Khorshidvand, A.R., Eslami, M.R.: A comparison between thermal buckling solutions of power-law, sigmoid, exponential FGM circular plates. IACSIT Int. J. Eng. Technol. 5, 191–194 (2013)

    Article  Google Scholar 

  39. Khosravi, H., Khosravi, M., Khosravi, M., Mousavi, S.S.: Analyzing thermal stability of circular plates made of FGM bimorphs considering the first-order shear deformation theory. Indian J. Sci. Technol. 8, 1–11 (2015)

    Article  Google Scholar 

  40. Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F., Martins, P.A.L.S.: Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Compos. Struct. 69, 449–457 (2005)

    Article  Google Scholar 

  41. Vaghefi, R., Baradaran, G.H., Koohkan, H.: Three-dimensional static analysis of thick functionally graded plates by using meshless local Petrov–Galerkin (MLPG) method. Eng. Anal. Bound. Elem. 34, 564–573 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wu, C.P., Chiu, K.H., Wang, Y.M.: RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D analysis of multilayered composite and FGM plates. Compos. Struct. 93, 923–943 (2011)

    Article  Google Scholar 

  43. Zhang, L.W., Liew, K.M., Reddy, J.N.: Geometrically nonlinear analysis of arbitrarily straight-sided quadrilateral FGM plates. Compos. Struct. 154, 443–452 (2016)

    Article  Google Scholar 

  44. Dai, K.Y., Liu, G.R., Lim, K.M., Han, X., Du, S.Y.: A meshfree radial point interpolation method for analysis of functionally graded material (FGM) plates. Comput. Mech. 34, 213–223 (2004)

    Article  MATH  Google Scholar 

  45. Zhao, X., Lee, Y.Y., Liew, K.M.: Free vibration analysis of functionally graded plates using the element-free kp-Ritz method. J. Sound Vib. 319, 918–939 (2009)

    Article  Google Scholar 

  46. Roque, C.M.C., Ferreira, A.J.M., Neves, A.M.A., Fasshauer, G.E., Soares, C.M.M., Jorge, R.M.N.: Dynamic analysis of functionally graded plates and shells by radial basis functions. Mech. Adv. Mater. Struct. 17, 636–652 (2010)

    Article  Google Scholar 

  47. Pilafkan, R., Folkow, P.D., Darvizeh, M., Darvizeh, A.: Three dimensional frequency analysis of bidirectional functionally graded thick cylindrical shells using a radial point interpolation method (RPIM). Eur. J. Mech. A/Solids 39, 26–34 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, H., Qin, Q.-H., Kang, Y.-L.: A meshless model for transient heat conduction in functionally graded materials. Comput. Mech. 38, 51–60 (2006)

    Article  MATH  Google Scholar 

  49. Khosravifard, A., Hematiyan, M.R., Marin, L.: Nonlinear transient heat conduction analysis of functionally graded materials in the presence of heat sources using an improved meshless radial point interpolation method. Appl. Math. Model. 35, 4157–4174 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Dai, K.Y., Liu, G.R., Han, X., Lim, K.M.: Thermomechanical analysis of functionally graded material (FGM) plates using element-free Galerkin method. Comput. Struct. 83, 1487–1502 (2005)

    Article  Google Scholar 

  51. Lee, Y.Y., Zhao, X., Liew, K.M.: Thermoelastic analysis of functionally graded plates using the element-free kp-Ritz method. Smart Mater. Struct. 18, 035007 (2009)

    Article  Google Scholar 

  52. Zhu, P., Zhang, L.W., Liew, K.M.: Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov–Galerkin approach with moving Kriging interpolation. Compos. Struct. 107, 298–314 (2014)

    Article  Google Scholar 

  53. Vaghefi, R., Hematiyan, M.R., Nayebi, A.: Three-dimensional thermo-elastoplastic analysis of thick functionally graded plates using the meshless local Petrov–Galerkin method. Eng. Anal. Bound. Elem. 71, 34–49 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhao, X., Lee, Y.Y., Liew, K.M.: Mechanical and thermal buckling analysis of functionally graded plates. Compos. Struct. 90, 161–171 (2009)

    Article  Google Scholar 

  55. Lee, Y.Y., Zhao, X., Reddy, J.N.: Postbuckling analysis of functionally graded plates subject to compressive and thermal loads. Comput. Methods Appl. Mech. Eng. 199, 1645–1653 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhang, L.W., Zhu, P., Liew, K.M.: Thermal buckling of functionally graded plates using a local Kriging meshless method. Compos. Struct. 108, 472–492 (2014)

    Article  Google Scholar 

  57. Liew, K.M., Zhao, X., Ferreira, A.J.M.: A review of meshless methods for laminated and functionally graded plates and shells. Compos. Struct. 93, 2031–2041 (2011)

    Article  Google Scholar 

  58. Thai, H.T., Kim, S.E.: A review of theories for the modeling and analysis of functionally graded plates and shells. Compos. Struct. 128, 70–86 (2015)

    Article  Google Scholar 

  59. Ma, L.S., Wang, T.J.: Relationship between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory. Int. J. Solids Struct. 41, 85–101 (2004)

    Article  MATH  Google Scholar 

  60. Karama, M., Afaq, K.S., Mistou, S.: Mechanical behavior of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity. Int. J. Solid Struct. 40, 1525–1546 (2003)

    Article  MATH  Google Scholar 

  61. Arya, H., Shimpi, R.P., Naik, N.K.: A zigzag model for laminated composite beams. Compos. Struct. 56, 21–24 (2002)

    Article  Google Scholar 

  62. Touratier, M.: A refined theory for thick composite plates. Mech. Res. Commun. 15, 229–236 (1988)

    Article  MATH  Google Scholar 

  63. Soldatos, K.P.: A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 94, 195–220 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  64. Zenkour, A.M., Sobhy, M.: Thermal buckling of various types of FGM sandwich plates. Compos. Struct. 93, 93–102 (2010)

    Article  Google Scholar 

  65. Fazzolari, F.A., Carrera, E.: Thermal stability of FGM sandwich plates under various through-the-thickness temperature distributions. J. Therm. Stress. 37, 1449–1481 (2014)

    Article  Google Scholar 

  66. Wang, J.G., Liu, G.R.: A point interpolation meshless method based on radial basis functions. Int. J. Numer. Methods Eng. 54, 1623–1648 (2002)

    Article  MATH  Google Scholar 

  67. Hardy, R.L.: Theory and applications of the multiquadric-Biharmonic method (20 years of discovery 1968–1988). Comput. Math. Appl. 19, 127–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  68. Wang, J.G., Liu, G.R.: On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comput. Methods Appl. Mech. Eng. 191, 2611–2630 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  69. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  70. Carrera, E., Brischetto, S., Cinefra, M., Soave, M.: Effects of thickness stretching in functionally graded plates and shells. Compos. Part B Eng. 42, 123–133 (2011)

    Article  Google Scholar 

  71. Brischetto, S.: Classical and mixed advanced models for sandwich plates embedding functionally graded cores. J. Mech. Mater. Struct. 4, 13–33 (2009)

    Article  Google Scholar 

  72. Zenkour, A.M.: Generalized shear deformation theory for bending analysis of functionally graded plates. Appl. Math. Model. 30, 67–84 (2006)

    Article  MATH  Google Scholar 

  73. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N.: A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos. Part B Eng. 43, 711–772 (2012)

    Article  Google Scholar 

  74. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N.: Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos. Part B Eng. 44, 657–674 (2013)

    Article  Google Scholar 

  75. Mahi, A., Bedia, E.A.A., Tounsi, A.: A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl. Math. Model. 39, 2489–2508 (2015)

    Article  MathSciNet  Google Scholar 

  76. Saidi, A.R., Rasouli, A., Sahraee, S.: Axisymmetric bending and buckling analysis of thick functionally graded circular plates using unconstrained third-order shear deformation plate theory. Compos. Struct. 89, 110–119 (2009)

    Article  Google Scholar 

  77. Reddy, J.N., Wang, C.M., Kitipornchai, S.: Axisymmetric bending of functionally graded circular and annular plates. Eur. J. Mech. A/Solids 18, 185–199 (1999)

    Article  MATH  Google Scholar 

  78. Tran, V.L., Thai, C.H., Nguyen-Xuan, H.: An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates. Finite Elem. Anal. Des. 73, 65–76 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Mid-career Researcher Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2015R1A2A2A01006390).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Hyung Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Do, V.N., Lee, CH. Nonlinear thermal buckling analyses of functionally graded circular plates using higher-order shear deformation theory with a new transverse shear function and an enhanced mesh-free method. Acta Mech 229, 3787–3811 (2018). https://doi.org/10.1007/s00707-018-2190-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2190-7

Navigation