Skip to main content
Log in

Films over topography: from creeping flow to linear stability, theory, and experiments, a review

  • Review and Perspective in Mechanics
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present review deals with the effects of topography and inertia on gravity-driven film flows. The article is organized like a rope ladder, with the rungs of topography and inertia being scaled one after another. We begin with an introduction, where we specify the literature reviewed in our article and highlight the physical significance of this type of fluid motion. Next, we address the effects of different types of topographies on creeping film flow and films in lubrication approximation, and on inertial flow. Then, findings on inertial flow with sidewalls as bounding topography are reviewed. In all these cases, the impact of topography and inertia on both the free surface and the flow field structure is shown. Subsequently, we briefly highlight inverse problem theory. The following penultimate section focuses on the stability of film flows. After a short review on the stability of films over flat inclines which we give for convenience, the stability of films over topography is considered. A discussion on the stability of films with sidewalls as bounding topography follows. In each case, the interaction between topography, flow field, and free surface is shown with the theoretical and experimental methods being discussed. Finally, the paper closes with some concluding remarks and an outlook from the authors’ perspective—one century after the groundbreaking work of Wilhelm Nusselt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Gennes, P.-G., Brochard-Wyart, F., Quere, D.: Capillarity and Wetting Phenomena. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  2. Braun, R.J.: Dynamics of the tear film. Annu. Rev. Fluid Mech. 44, 267–297 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Luca, I., Hutter, K., Tai, Y.C., Kuo, C.Y.: A hierarchy of avalanche models on arbitrary topography. Acta Mech. 205, 121–149 (2009)

    Article  MATH  Google Scholar 

  4. Greve, R., Blatter, H.: Dynamics of Ice Sheets and Glaciers. Springer, Berlin (2009)

    Book  Google Scholar 

  5. Kumar, A., Karig, D., Acharya, R., Neethirajan, S., Mukherjee, P.P., Retterer, S., Doktycz, M.J.: Microscale confinement features can affect biofilm formation. Microfluid. Nanofluid. 14, 895–902 (2013)

    Article  Google Scholar 

  6. Webb, R.L.: Principles of Enhanced Heat Transfer. Wiley, New York (1994)

    Google Scholar 

  7. Kistler, S.F., Schweizer, P.M.: Liquid Film Coating. Springer, Netherlands (1997)

    Book  Google Scholar 

  8. Weinstein, S.J., Ruschak, K.J.: Coating flows. Annu. Rev. Fluid Mech. 36, 29–53 (2004)

    Article  MATH  Google Scholar 

  9. Gugler, G., Beer, R., Mauron, M.: Operative limits of curtain coating due to edges. Chem. Eng. Process. Process Intensif. 50, 462–465 (2011)

    Article  Google Scholar 

  10. Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931–980 (1997)

    Article  Google Scholar 

  11. Chang, H.C., Demekhin, E.A.: Complex Wave Dynamics on Thin Films. Elsevier, Amsterdam (2002)

    Google Scholar 

  12. Craster, R.V., Matar, O.K.: Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 1131–1198 (2009)

    Article  Google Scholar 

  13. Nusselt, W.: Die Oberflächenkondensation des Wasserdampfes. VDI Z 60, 541–546 (1916)

    Google Scholar 

  14. Spurk, J.-H., Aksel, N.: Fluid Mechanics, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  15. Kalliadasis, S., Bielarz, C., Homsy, G.M.: Steady free-surface thin film flows over topography. Phys. Fluids 12, 1889–1898 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kalliadasis, S., Bielarz, C.: Erratum: steady free-surface thin film flows over topography [Phys. Fluids 12, 1889 (2000)]. Phys. Fluids 12, 3305 (2000)

    Article  MathSciNet  Google Scholar 

  17. Mazouchi, A., Homsy, G.M.: Free surface Stokes flow over topography. Phys. Fluids 13, 2751–2761 (2001)

    Article  MATH  Google Scholar 

  18. Aksel, N.: Influence of the capillarity on a creeping film flow down an inclined plane with an edge. Arch. Appl. Mech. 70, 81–90 (2000)

    Article  MATH  Google Scholar 

  19. Heining, C., Sellier, M., Aksel, N.: The inverse problem in creeping film flows. Acta Mech. 223, 841–847 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gaskell, P.H., Jimack, P.K., Sellier, M., Thompson, H.M., Wilson, M.C.T.: Gravity-driven flow of continuous thin liquid films on non-porous substrates with topography. J. Fluid Mech. 509, 253–280 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, C.Y.: Liquid film flowing slowly down a wavy incline. AIChE J. 27, 207–212 (1981)

    Article  Google Scholar 

  22. Scholle, M., Wierschem, A., Aksel, N.: Creeping films with vortices over strongly undulated bottoms. Acta Mech. 168, 167–193 (2004)

    Article  MATH  Google Scholar 

  23. Scholle, M., Rund, A., Aksel, N.: Drag reduction and improvement of material transport in creeping films. Acta Mech. 75, 93–112 (2006)

    MATH  Google Scholar 

  24. Pozrikidis, C.: The flow of a liquid film along a periodic wall. J. Fluid Mech. 188, 275–300 (1988)

    Article  MATH  Google Scholar 

  25. Wierschem, A., Scholle, M., Aksel, N.: Vortices in film flow over strongly undulated bottom profiles at low Reynolds numbers. Phys. Fluids 15, 426–435 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nguyen, P.K., Bontozoglou, V.: Steady solutions of inertial film flow along strongly undulated substrates. Phys. Fluids 23, 052103 (2011)

    Article  Google Scholar 

  27. Moffatt, H.K.: Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1–18 (1964)

    Article  MATH  Google Scholar 

  28. Pozrikidis, C., Thoroddsen, S.T.: The deformation of a liquid film flowing down an inclined plane wall over a small particle arrested on the wall. Phys. Fluids A 3, 2546–2558 (1991)

    Article  MATH  Google Scholar 

  29. Hayes, M., O’Brien, S.B.G., Lammers, J.H.: Green’s function for steady flow over a small two-dimensional topography. Phys. Fluids 12, 2845–2858 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Blyth, M.G., Pozrikidis, C.: Film flow down an inclined plane over a three-dimensional obstacle. Phys. Fluids 18, 052104 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Baxter, S.J., Power, H., Cliffe, K.A., Hibberd, S.: Three-dimensional thin film flow over and around an obstacle on an inclined plane. Phys. Fluids 21, 032102 (2009)

    Article  MATH  Google Scholar 

  32. Lee, Y.C., Thompson, H.M., Gaskell, P.H.: An efficient adaptive multigrid algorithm for predicting thin film flow on surfaces containing localised topographic features. Comput. Fluids 36, 838–855 (2007)

    Article  MATH  Google Scholar 

  33. Sellier, M., Lee, Y.C., Thompson, H.M., Gaskell, P.H.: Thin film flow on surfaces containing arbitrary occlusions. Comput. Fluids 38, 171–182 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lee, Y.C., Thompson, H.M., Gaskell, P.H.: Three-dimensional thin film and droplet flows over and past surface features with complex physics. Comput. Fluids 46, 306–311 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lee, Y.C., Thompson, H.M., Gaskell, P.H.: Dynamics of thin film flow on flexible substrate. Chem. Eng. Process. Process Intensif. 50, 525–530 (2011)

    Article  Google Scholar 

  36. Luo, H., Pozrikidis, C.: Gravity-driven film flow down an inclined wall with three-dimensional corrugations. Acta Mech. 188, 209–225 (2007)

    Article  MATH  Google Scholar 

  37. Bontozoglou, V., Serifi, K.: Falling film flow along steep two-dimensional topography: the effect of inertia. Int. J. Multiph. Flow 34, 734–747 (2008)

    Article  Google Scholar 

  38. Wierschem, A., Scholle, M., Aksel, N.: Comparison of different theoretical approaches to experiments on film flow down an inclined wavy channel. Exp. Fluids 33, 429–442 (2002)

    Article  Google Scholar 

  39. Wierschem, A., Aksel, N.: Influence of inertia on eddies created in films creeping over strongly undulated substrates. Phys. Fluids 16, 4566–4574 (2004)

    Article  MATH  Google Scholar 

  40. Scholle, M., Haas, A., Aksel, N., Wilson, M.C.T., Thompson, H.M., Gaskell, P.H.: Competing geometric and inertial effects on local flow structure in thick gravity-driven fluid films. Phys. Fluids 20, 123101 (2008)

    Article  MATH  Google Scholar 

  41. Bontozoglou, V., Kalliadasis, S., Karabelas, A.J.: Inviscid free-surface flow over a periodic wall. J. Fluid Mech. 226, 189–203 (1991)

    Article  MATH  Google Scholar 

  42. Bontozoglou, V., Papapolymerou, G.: Laminar film flow down a wavy incline. Int. J. Multiph. Flow 23, 69–79 (1997)

    Article  MATH  Google Scholar 

  43. Trifonov, Y.Y.: Viscous liquid film flows over a periodic surface. Int. J. Multiph. Flow 24, 1139–1161 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Bontozoglou, V.: Laminar film flow along a periodic wall. CMES-Comp. Model Eng. 1, 133–142 (2000)

    MATH  Google Scholar 

  45. Wierschem, A., Aksel, N.: Hydraulic jumps and standing waves in gravity-driven flows of viscous liquids in wavy open channels. Phys. Fluids 16, 3868–3877 (2004)

    Article  MATH  Google Scholar 

  46. Wierschem, A., Bontozoglou, V., Heining, C., Uecker, H., Aksel, N.: Linear resonance in viscous films on inclined wavy planes. Int. J. Multiph. Flow 34, 580–589 (2008)

    Article  Google Scholar 

  47. Anshus, B.E., Goren, S.L.: A method of getting approximate solutions to the Orr-Sommerfeld equation for flow on a vertical wall. AICHE J. 12, 1004–1008 (1966)

    Article  Google Scholar 

  48. Heining, C., Bontozoglou, V., Aksel, N., Wierschem, A.: Nonlinear resonance in viscous films on inclined wavy planes. Int. J. Multiph. Flow 35, 78–90 (2009)

    Article  Google Scholar 

  49. Duffing, G.: Erzwungene Schwingungen bei Veränderlicher Eigenfrequenz. F. Vieweg und Sohn, Braunschweig (1918)

    MATH  Google Scholar 

  50. Malamataris, N.A., Bontozoglou, V.: Computer aided analysis of viscous film flow along an inclined wavy wall. J. Comput. Phys. 154, 372–392 (1999)

    Article  MATH  Google Scholar 

  51. Pak, M.I., Hu, G.H.: Numerical investigations on vortical structures of viscous film flows along periodic rectangular corrugations. Int. J. Multiph. Flow 37, 369–379 (2011)

    Article  Google Scholar 

  52. Vlachogiannis, M., Bontozoglou, V.: Experiments on laminar film flow along a periodic wall. J. Fluid Mech. 457, 133–156 (2002)

    Article  MATH  Google Scholar 

  53. Argyriadi, K., Vlachogiannis, M., Bontozoglou, V.: Experimental study of inclined film flow along periodic corrugations: the effect of wall steepness. Phys. Fluids 18, 012102 (2006)

    Article  Google Scholar 

  54. Wierschem, A., Pollak, T., Heining, C., Aksel, N.: Suppression of eddies in films over topography. Phys. Fluids 22, 113603 (2010)

    Article  Google Scholar 

  55. Valluri, P., Matar, O.K., Hewitt, G.F., Mendes, M.A.: Thin film flow over structured packings at moderate Reynolds numbers. Chem. Eng. Sci. 60, 1965–1975 (2005)

    Article  Google Scholar 

  56. Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: Steady film flow over a substrate with rectangular trenches forming air inclusions. Phys. Rev. Fluids 2, 124001 (2017)

    Article  Google Scholar 

  57. Decré, M.M.J., Baret, J.-C.: Gravity-driven flows of viscous liquids over two-dimensional topographies. J. Fluid Mech. 487, 147–166 (2003)

    Article  MATH  Google Scholar 

  58. Veremieiev, S., Thompson, H.M., Gaskell, P.H.: Inertial thin film flow on planar surfaces featuring topography. Comput. Fluids 39, 431–450 (2010)

    Article  MATH  Google Scholar 

  59. Veremieiev, S., Thompson, H.M., Gaskell, P.H.: Free-surface film flow over topography: full three-dimensional finite element solutions. Comput. Fluids 122, 66–82 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wang, C.Y.: Low Reynolds number film flow down a three-dimensional bumpy surface. J. Fluids Eng. 127, 1122–1127 (2005)

    Article  Google Scholar 

  61. Luo, H., Pozrikidis, C.: Effect of inertia on film flow over oblique and three-dimensional corrugations. Phys. Fluids 18, 078107 (2006)

    Article  MATH  Google Scholar 

  62. Luo, H., Pozrikidis, C.: Publisher’s note: effect of inertia on film flow over oblique and three-dimensional corrugations [Phys. Fluids 18, 078107 (2006)]. Phys. Fluids 18, 129901 (2006)

    Article  MATH  Google Scholar 

  63. Heining, C., Pollak, T., Aksel, N.: Pattern formation and mixing in three-dimensional film flow. Phys. Fluids 24, 042102 (2012)

    Article  Google Scholar 

  64. Scholle, M., Aksel, N.: An exact solution of visco-capillary flow in an inclined channel. Zeitschrift für Angewandte Mathematik und Physik ZAMP 52, 749–769 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  65. Scholle, M., Aksel, N.: Thin film limit and film rupture of the visco-capillary gravity-driven channel flow. Zeitschrift für Angewandte Mathematik und Physik ZAMP 54, 517–531 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  66. Haas, A., Pollak, T., Aksel, N.: Side wall effects in thin gravity-driven film flow: steady and draining flow. Phys. Fluids 23, 062107 (2011)

    Article  Google Scholar 

  67. Sellier, M.: Inverse problems in free surface flows: a review. Acta Mech. 227, 913–935 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  68. Sellier, M.: Substrate design or reconstruction from free surface data for thin film flows. Phys. Fluids 20, 062106 (2008)

    Article  MATH  Google Scholar 

  69. Heining, C., Aksel, N.: Bottom reconstruction in thin-film flow over topography: steady solution and linear stability. Phys. Fluids 21, 083605 (2009)

    Article  MATH  Google Scholar 

  70. Heining, C.: Velocity field reconstruction in gravity-driven flow over unknown topography. Phys. Fluids 23, 032101 (2011)

    Article  Google Scholar 

  71. Heining, C., Pollak, T., Sellier, M.: Flow domain identification from free surface velocity in thin inertial films. J. Fluid Mech. 720, 338–356 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  72. Anjalaiah, Y., Chakraborty, S., Usha, R.: Steady solution of an inverse problem in gravity-driven shear-thinning film flow: reconstruction of an uneven bottom substrate. J. Non-Newton Fluid Mech. 219, 65–77 (2015)

    Article  MathSciNet  Google Scholar 

  73. Usha, R.: Anjalaiah: Steady solution and spatial stability of gravity-driven thin-film flow: reconstruction of an uneven slippery bottom substrate. Acta Mech. 227, 1685–1709 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  74. Heining, C., Sellier, M.: Flow domain identification in three-dimensional creeping flows. Phys. Fluids. 29, 012107 (2017)

    Article  Google Scholar 

  75. Schörner, M., Reck, D., Aksel, N.: Does the topography’s specific shape matter in general for the stability of film flows? Phys. Fluids 27, 042103 (2015)

    Article  Google Scholar 

  76. Kapitza, P.L.: Wavy flow of thin layers of a viscous fluid. Zh. Eksp. Teor. Fiz. 18, 3–28 (1948)

    Google Scholar 

  77. Kapitza, P.L., Kapitza, S.P.: Wavy flow of thin layers of a viscous fluid. Zh. Eksp. Teor. Fiz. 19, 105–120 (1949)

    MATH  Google Scholar 

  78. Benjamin, T.B.: Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554–574 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  79. Yih, C.S.: Stability of liquid flow down an inclined plane. Phys. Fluids 6, 321–334 (1963)

    Article  MATH  Google Scholar 

  80. Orr, W.: The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I: a perfect liquid. Proc. R. Ir. Acad. A Math. Phys. Sci. 27, 9–68 (1907)

    Google Scholar 

  81. Orr, W.M.F.: The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: a viscous liquid. Proc. R. Ir. Acad. A Math. Phys. Sci. 27, 69–138 (1907)

    Google Scholar 

  82. Sommerfeld, A.: Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüssigkeitsbewegungen. In: Proceedings of the 4th International Congress of Mathematicians, vol. 3, pp. 116-124 (1908)

  83. Lin, S.P.: Finite-amplitude stability of a parallel flow with a free surface. J. Fluid Mech. 36, 113–126 (1969)

    Article  MATH  Google Scholar 

  84. Gjevik, B.: Occurrence of finite-amplitude surface waves on falling liquid films. Phys. Fluids 13, 1918–1925 (1970)

    Article  MATH  Google Scholar 

  85. Benney, D.J.: Long waves on liquid films. J. Math. Phys. 45, 150 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  86. Liu, J., Paul, J.D., Gollub, J.P.: Measurements of the primary instabilities of film flows. J. Fluid Mech. 250, 69–101 (1993)

    Article  Google Scholar 

  87. Liu, J., Gollub, J.P.: Solitary wave dynamics of film flows. Phys. Fluids 6, 1702–1712 (1994)

    Article  Google Scholar 

  88. Liu, J., Gollub, J.P.: Onset of spatially chaotic waves on flowing films. Phys. Rev. Lett. 70, 2289–2292 (1993)

    Article  Google Scholar 

  89. Liu, J., Schneider, J.B., Gollub, J.P.: Three-dimensional instabilities of film flows. Phys. Fluids 7, 55–67 (1995)

    Article  MathSciNet  Google Scholar 

  90. Trifonov, Y.Y.: Stability of the wavy film falling down a vertical plate: the DNS computations and Floquet theory. Int. J. Multiph. Flow 61, 73–82 (2014)

    Article  MathSciNet  Google Scholar 

  91. Kalliadasis, S., Homsy, G.M.: Stability of free-surface thin-film flows over topography. J. Fluid Mech. 448, 387–410 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  92. Bielarz, C., Kalliadasis, S.: Time-dependent free-surface thin film flows over topography. Phys. Fluids 15, 2512–2524 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  93. Dávalos-Orozco, L.A.: Instabilities of thin films flowing down flat and smoothly deformed walls. Microgravity Sci. Technol. 20, 225–229 (2008)

    Article  Google Scholar 

  94. Dávalos-Orozco, L.A.: Nonlinear instability of a thin film flowing down a smoothly deformed surface. Phys. Fluids 19, 074103 (2007)

    Article  MATH  Google Scholar 

  95. Wierschem, A., Aksel, N.: Instability of a liquid film flowing down an inclined wavy plane. Physica D 186, 221–237 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  96. Wierschem, A., Lepski, C., Aksel, N.: Effect of long undulated bottoms on thin gravity-driven films. Acta Mech. 179, 41–66 (2005)

    Article  MATH  Google Scholar 

  97. Trifonov, Y.Y.: Stability and nonlinear wavy regimes in downward film flows on a corrugated surface. J. App. Mech. Tech. Phys. 48, 91–100 (2007)

    Article  MATH  Google Scholar 

  98. Trifonov, Y.Y.: Stability of a viscous liquid film flowing down a periodic surface. Int. J. Multiph. Flow 33, 1186–1204 (2007)

    Article  Google Scholar 

  99. Heining, C., Aksel, N.: Effects of inertia and surface tension on a power-law fluid flowing down a wavy incline. Int. J. Multiph. Flow 36, 847–857 (2010)

    Article  Google Scholar 

  100. D’Alessio, S.J.D., Pascal, J.P., Jasmine, H.A.: Instability in gravity-driven flow over uneven surfaces. Phys. Fluids 21, 062105 (2009)

    Article  MATH  Google Scholar 

  101. Jordan, D.W., Smith, P.: Nonlinear Ordinary Differential Equations, 2nd edn. Oxford University Press, Oxford (1987)

    MATH  Google Scholar 

  102. Ruyer-Quil, C., Manneville, P.: Improved modeling of flows down inclined planes. Eur. Phys. J. B 15, 357 (2000)

    Article  MATH  Google Scholar 

  103. Balmforth, N.J., Mandre, S.: Dynamics of roll waves. J. Fluid Mech. 514, 1–33 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  104. Kármán, Th. v.: Über laminare und turbulente Reibung. ZAMM 1, 233-252 (1921)

  105. Pohlhausen, K.: Zur näherungsweisen Integration der Differentialgleichung der laminaren Reibungsschicht. ZAMM 1, 252–268 (1921)

    Article  MATH  Google Scholar 

  106. Pollak, T., Aksel, N.: Crucial flow stabilization and multiple instability branches of gravity-driven films over topography. Phys. Fluids 25, 024103 (2013)

    Article  Google Scholar 

  107. Trifonov, Y.Y.: Stability of a film flowing down an inclined corrugated plate: the direct Navier–Stokes computations and Floquet theory. Phys. Fluids 26, 114101 (2014)

    Article  Google Scholar 

  108. Cao, Z., Vlachogiannis, M., Bontozoglou, V.: Experimental evidence for a short-wave global mode in film flow along periodic corrugations. J. Fluid Mech. 718, 304–320 (2013)

    Article  MATH  Google Scholar 

  109. Schörner, M., Reck, D., Aksel, N.: Stability phenomena far beyond the Nusselt flow: revealed by experimental asymptotics. Phys. Fluids 28, 022102 (2016)

    Article  Google Scholar 

  110. Trifonov, Y.Y.: Viscous liquid film flow down an inclined corrugated surface. Calculation of the flow stability to arbitrary perturbations using an integral method. J. Appl. Mech. Tech. Phys. 57, 195–201 (2016)

    Article  MathSciNet  Google Scholar 

  111. Trifonov, Y.Y.: Nonlinear waves on a liquid film falling down an inclined corrugated surface. Phys. Fluids 29, 054104 (2017)

    Article  Google Scholar 

  112. Schörner, M., Reck, D., Aksel, N., Trifonov, Y.Y.: Switching between different types of stability isles in films over topographies. Acta Mech. 229, 423–436 (2018)

    Article  MathSciNet  Google Scholar 

  113. Schörner, M., Aksel, N.: The stability cycle: a universal pathway for the stability of films over topography. Phys. Fluids 30, 012105 (2018)

    Article  Google Scholar 

  114. Dauth, M., Schörner, M., Aksel, N.: What makes the free surface waves over topographies convex or concave? Phys. Fluids 29, 092108 (2017)

    Article  Google Scholar 

  115. Reck, D., Aksel, N.: Experimental study on the evolution of traveling waves over an undulated incline. Phys. Fluids 25, 102101 (2013)

    Article  Google Scholar 

  116. Vlachogiannis, M., Samandas, A., Leontidis, V., Bontozoglou, V.: Effect of channel width on the primary instability of inclined film flow. Phys. Fluids 22, 012106 (2010)

    Article  MATH  Google Scholar 

  117. Leontidis, V., Vatteville, J., Vlachogiannis, M., Andritsos, N., Bontozoglou, V.: Nominally two-dimensional waves in inclined film flow in channels of finite width. Phys. Fluids 22, 112106 (2010)

    Article  Google Scholar 

  118. Georgantaki, A., Vatteville, J., Vlachogiannis, M., Bontozoglou, V.: Measurements of liquid film flow as a function of fluid properties and channel width: evidence for surface-tension-induced long-range transverse coherence. Phys. Rev. E 84, 026325 (2011)

    Article  Google Scholar 

  119. Pollak, T., Haas, A., Aksel, N.: Side wall effects on the instability of thin gravity-driven films: from long-wave to short-wave instability. Phys. Fluids 23, 094110 (2011)

    Article  Google Scholar 

  120. Guzanov, V.V., Bobylev, A.V., Heinz, O.M., Kvon, A.Z., Markovich, D.M.: Characterization of 3-D wave flow regimes on falling liquid films. Int. J. Multiph. Flow 99, 474–484 (2018)

    Article  Google Scholar 

  121. Thompson, A.B., Gomes, S.N., Pavoliotis, G.A., Papageorgiou, D.T.: Stabilising falling liquid film flows using feedback control. Phys. Fluids 28, 012107 (2016)

    Article  Google Scholar 

  122. Gomes, S.N., Kalliadasis, S., Papageorgiou, D.T., Pavoliotis, G.A.: Controlling roughening processes in the stochastic Kuramoto–Sivashinsky equation. Physica D 348, 33–43 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  123. Usha, R.: Effects of velocity slip on the inertialess instability of a contaminated two-layer film flow. Acta Mech. 226, 3111–3132 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  124. Ghosh, S., Usha, R.: Stability of viscosity stratified flows down an incline: role of miscibility and wall slip. Phys. Fluids 28, 104101 (2016)

    Article  Google Scholar 

  125. Tseluiko, D., Blyth, M.G., Papageorgiou, D.T.: Stability of film flow over inclined topography based on a long-wave nonlinear model. J. Fluid Mech. 729, 638–671 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuri Aksel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksel, N., Schörner, M. Films over topography: from creeping flow to linear stability, theory, and experiments, a review. Acta Mech 229, 1453–1482 (2018). https://doi.org/10.1007/s00707-018-2146-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2146-y

Navigation