Skip to main content

Advertisement

Log in

Strain-mediated magnetoelectric effect for the electric-field control of magnetic states in nanomagnets

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Electric-field control of magnetism without electric currents potentially revolutionizes spintronics toward ultralow power. Here, by using mechanically coupled phase field simulations, we computationally demonstrate the application of the strain-mediated magnetoelectric effect for the electric-field control of magnetic states in a heterostructure. In the model heterostructure constituted of the soft nanomagnet Co and the piezoelectric substrate PMN–PT, both the volatility of magnetic states and the magnetization switching dynamics excited by the electric field are explored. It is found that an electric field can drive the single-domain nanomagnet into an equilibrium vortex state. The nanomagnet remains in the vortex state even after removing the electric field or applying a reverse electric field, i.e., the vortex state is extremely stable and nonvolatile. Only by utilizing the precessional magnetization dynamics, the 180\(^\circ \) magnetization switching is possible in small-sized nanomagnets which are free of the stable vortex state. Electric-field pulses can realize the deterministic 180\(^\circ \) switching if the electric-field magnitude, pulse width, and ramp time are carefully designed. The minimum switching time is found to be less than 10 ns. These results provide useful information for the design of low-power, reliable, and fast electric-field-controlled spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salahuddin, S., Datta, S.: Interacting systems for self-correcting low power switching. Appl. Phys. Lett. 90(9), 093503 (2007). https://doi.org/10.1063/1.2709640

    Article  Google Scholar 

  2. Katine, J.A., Albert, F.J., Buhrman, R.A., Myers, E.B., Ralph, D.C.: Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84(14), 3149–3152 (2000). https://doi.org/10.1103/PhysRevLett.84.3149

    Article  Google Scholar 

  3. Peng, R.C., Hu, J.M., Momeni, K., Wang, J.J., Chen, L.Q., Nan, C.W.: Fast 180 degrees magnetization switching in a strain-mediated multiferroic heterostructure driven by a voltage. Sci. Rep. 6, 27561 (2016). https://doi.org/10.1038/srep27561

    Article  Google Scholar 

  4. Yi, M., Xu, B.-X., Shen, Z.: Effects of magnetocrystalline anisotropy and magnetization saturation on the mechanically induced switching in nanomagnets. J. Appl. Phys. 117(10), 103905 (2015). https://doi.org/10.1063/1.4914485

    Article  Google Scholar 

  5. Hu, J.M., Yang, T., Wang, J., Huang, H., Zhang, J., Chen, L.Q., Nan, C.W.: Purely electric-field-driven perpendicular magnetization reversal. Nano Lett. 15(1), 616–622 (2015). https://doi.org/10.1021/nl504108m

    Article  Google Scholar 

  6. Yi, M., Xu, B.-X., Shen, Z.: 180\(^\circ \) magnetization switching in nanocylinders by a mechanical strain. Extreme Mech. Lett. 3, 66–71 (2015). https://doi.org/10.1016/j.eml.2015.03.004

    Article  Google Scholar 

  7. Wang, J., Hu, J., Wang, H., Jiang, H., Wu, Z., Ma, J., Wang, X., Lin, Y., Nan, C.W.: Electric-field modulation of magnetic properties of Fe films directly grown on BiScO\(_3\)–PbTiO\(_3\) ceramics. J. Appl. Phys. 107(8), 083901 (2010). https://doi.org/10.1063/1.3369284

    Article  Google Scholar 

  8. Liu, M., Nan, T., Hu, J.-M., Zhao, S.-S., Zhou, Z., Wang, C.-Y., Jiang, Z.-D., Ren, W., Ye, Z.-G., Chen, L.-Q., Sun, N.X.: Electrically controlled non-volatile switching of magnetism in multiferroic heterostructures via engineered ferroelastic domain states. NPG Asia Mater. 8(9), e316 (2016). https://doi.org/10.1038/am.2016.139

    Article  Google Scholar 

  9. Yi, M., Xu, B.-X., Gross, D.: Mechanically induced deterministic 180\(^\circ \) switching in nanomagnets. Mech. Mater. 87, 40–49 (2015). https://doi.org/10.1016/j.mechmat.2015.04.006

    Article  Google Scholar 

  10. Hu, J.-M., Yang, T.N., Chen, L.Q., Nan, C.W.: Voltage-driven perpendicular magnetic domain switching in multiferroic nanoislands. J. Appl. Phys. 113(19), 194301 (2013). https://doi.org/10.1063/1.4804157

    Article  Google Scholar 

  11. Hu, J.-M., Nan, C.W.: Electric-field-induced magnetic easy-axis reorientation in ferromagnetic/ferroelectric layered heterostructures. Phys. Rev. B. (2009). https://doi.org/10.1103/PhysRevB.80.224416

  12. Buzzi, M., Chopdekar, R.V., Hockel, J.L., Bur, A., Wu, T., Pilet, N., Warnicke, P., Carman, G.P., Heyderman, L.J., Nolting, F.: Single domain spin manipulation by electric fields in strain coupled artificial multiferroic nanostructures. Phys. Rev. Lett. 111(2), 027204 (2013). https://doi.org/10.1103/PhysRevLett.111.027204

    Article  Google Scholar 

  13. Ghidini, M., Maccherozzi, F., Moya, X., Phillips, L.C., Yan, W., Soussi, J., Metallier, N., Vickers, M.E., Steinke, N.J., Mansell, R., Barnes, C.H., Dhesi, S.S., Mathur, N.D.: Perpendicular local magnetization under voltage control in Ni films on ferroelectric BaTiO\(_3\) substrates. Adv. Mater. 27(8), 1460–1465 (2015). https://doi.org/10.1002/adma.201404799

    Article  Google Scholar 

  14. Ghidini, M., Pellicelli, R., Prieto, J.L., Moya, X., Soussi, J., Briscoe, J., Dunn, S., Mathur, N.D.: Non-volatile electrically-driven repeatable magnetization reversal with no applied magnetic field. Nat. Commun. 4, 1453 (2013). https://doi.org/10.1038/ncomms2398

    Article  Google Scholar 

  15. Roy, K., Bandyopadhyay, S., Atulasimha, J.: Binary switching in a ‘symmetric’ potential landscape. Sci. Rep. 3, 3038 (2013). https://doi.org/10.1038/srep03038

    Article  Google Scholar 

  16. Roy, K., Bandyopadhyay, S., Atulasimha, J.: Switching dynamics of a magnetostrictive single-domain nanomagnet subjected to stress. Phys. Rev. B (2011). https://doi.org/10.1103/PhysRevB.83.224412

  17. Tiercelin, N., Dusch, Y., Klimov, A., Giordano, S., Preobrazhensky, V., Pernod, P.: Room temperature magnetoelectric memory cell using stress-mediated magnetoelastic switching in nanostructured multilayers. Appl. Phys. Lett. 99(19), 192507 (2011). https://doi.org/10.1063/1.3660259

    Article  Google Scholar 

  18. Roy, K., Bandyopadhyay, S., Atulasimha, J.: Energy dissipation and switching delay in stress-induced switching of multiferroic nanomagnets in the presence of thermal fluctuations. J. Appl. Phys. 112(2), 023914 (2012). https://doi.org/10.1063/1.4737792

    Article  Google Scholar 

  19. Brintlinger, T., Lim, S.H., Baloch, K.H., Alexander, P., Qi, Y., Barry, J., Melngailis, J., Salamanca-Riba, L., Takeuchi, I., Cumings, J.: In situ observation of reversible nanomagnetic switching induced by electric fields. Nano Lett. 10(4), 1219–1223 (2010). https://doi.org/10.1021/nl9036406

    Article  Google Scholar 

  20. Wang, J.J., Hu, J.M., Yang, T.N., Feng, M., Zhang, J.X., Chen, L.Q., Nan, C.W.: Effect of strain on voltage-controlled magnetism in BiFeO\(_3\)-based heterostructures. Sci. Rep. 4, 4553 (2014). https://doi.org/10.1038/srep04553

    Article  Google Scholar 

  21. Wang, J.J., Hu, J.M., Ma, J., Zhang, J.X., Chen, L.Q., Nan, C.W.: Full 180 degrees magnetization reversal with electric fields. Sci. Rep. 4, 7507 (2014). https://doi.org/10.1038/srep07507

    Article  Google Scholar 

  22. Li, P., Chen, A., Li, D., Zhao, Y., Zhang, S., Yang, L., Liu, Y., Zhu, M., Zhang, H., Han, X.: Electric field manipulation of magnetization rotation and tunneling magnetoresistance of magnetic tunnel junctions at room temperature. Adv. Mater. 26(25), 4320–4325 (2014). https://doi.org/10.1002/adma.201400617

    Article  Google Scholar 

  23. Avakian, A., Gellmann, R., Ricoeur, A.: Nonlinear modeling and finite element simulation of magnetoelectric coupling and residual stress in multiferroic composites. Acta Mech. 226(8), 2789–2806 (2015). https://doi.org/10.1007/s00707-015-1336-0

    Article  MathSciNet  MATH  Google Scholar 

  24. Ezzin, H., Amor, M.B., Ghozlen, M.H.B.: Propagation behavior of SH waves in layered piezoelectric/piezomagnetic plates. Acta Mech. (2016). https://doi.org/10.1007/s00707-016-1744-9

  25. Sridhar, A., Keip, M.-A., Miehe, C.: Homogenization in micro-magneto-mechanics. Comput. Mech. 58(1), 151–169 (2016). https://doi.org/10.1007/s00466-016-1286-y

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, J., Li, G.-P., Shimada, T., Fang, H., Kitamura, T.: Control of the polarity of magnetization vortex by torsion. Appl. Phys. Lett. 103(24), 242413 (2016). https://doi.org/10.1063/1.4847375

    Article  Google Scholar 

  27. Ong, P.V., Kioussis, N., Odkhuu, D., Amiri, P.K., Wang, K.L., Carman, G.P.: Giant voltage modulation of magnetic anisotropy in strained heavy metal/magnet/insulator heterostructures. Phys. Rev. B 92(2), 020407(R) (2015). https://doi.org/10.1103/PhysRevB.92.020407

    Article  Google Scholar 

  28. Ong, P.V., Kioussis, N., Amiri, P.K., Wang, K.L.: Electric-field-driven magnetization switching and nonlinear magnetoelasticity in Au/FeCo/MgO heterostructures. Sci. Rep. 6, 29815 (2016). https://doi.org/10.1038/srep29815

    Article  Google Scholar 

  29. Weisheit, M., Fahler, S., Marty, A., Souche, Y., Poinsignon, C., Givord, D.: Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315(5810), 349–351 (2007). https://doi.org/10.1126/science.1136629

    Article  Google Scholar 

  30. Zhu, W., Xiao, D., Liu, Y., Gong, S.J., Duan, C.G.: Picosecond electric field pulse induced coherent magnetic switching in MgO/FePt/Pt(001)-based tunnel junctions: a multiscale study. Sci. Rep. 4, 4117 (2014). https://doi.org/10.1038/srep04117

    Article  Google Scholar 

  31. Rondinelli, J.M., Stengel, M., Spaldin, N.A.: Carrier-mediated magnetoelectricity in complex oxide heterostructures. Nat. Nanotechnol. 3(1), 46–50 (2008). https://doi.org/10.1038/nnano.2007.412

    Article  Google Scholar 

  32. Duan, C.G., Velev, J.P., Sabirianov, R.F., Zhu, Z., Chu, J., Jaswal, S.S., Tsymbal, E.Y.: Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 101(13), 137201 (2008). https://doi.org/10.1103/PhysRevLett.101.137201

    Article  Google Scholar 

  33. Maruyama, T., Shiota, Y., Nozaki, T., Ohta, K., Toda, N., Mizuguchi, M., Tulapurkar, A.A., Shinjo, T., Shiraishi, M., Mizukami, S., Ando, Y., Suzuki, Y.: Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 4(3), 158–161 (2009). https://doi.org/10.1038/nnano.2008.406

    Article  Google Scholar 

  34. Niranjan, M.K., Duan, C.-G., Jaswal, S.S., Tsymbal, E.Y.: Electric field effect on magnetization at the Fe/MgO(001) interface. Appl. Phys. Lett. 96(22), 222504 (2010). https://doi.org/10.1063/1.3443658

    Article  Google Scholar 

  35. Wang, W.G., Li, M., Hageman, S., Chien, C.L.: Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11(1), 64–68 (2011). https://doi.org/10.1038/nmat3171

    Article  Google Scholar 

  36. Shiota, Y., Nozaki, T., Bonell, F., Murakami, S., Shinjo, T., Suzuki, Y.: Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11(1), 39–43 (2011). https://doi.org/10.1038/nmat3172

    Article  Google Scholar 

  37. Zhou, Z., Howe, B.M., Liu, M., Nan, T., Chen, X., Mahalingam, K., Sun, N.X., Brown, G.J.: Interfacial charge-mediated non-volatile magnetoelectric coupling in Co\(_{0.3}\)Fe\(_{0.7}\)/Ba\(_{0.6}\)Sr\(_{0.4}\)TiO\(_3\)/Nb:SrTiO\(_3\) multiferroic heterostructures. Sci. Rep. 5, 7740 (2015). https://doi.org/10.1038/srep07740

  38. Yang, S.W., Peng, R.C., Jiang, T., Liu, Y.K., Feng, L., Wang, J.J., Chen, L.Q., Li, X.G., Nan, C.W.: Non-volatile 180 degrees magnetization reversal by an electric field in multiferroic heterostructures. Adv. Mater. 26(41), 7091–7095 (2014). https://doi.org/10.1002/adma.201402774

    Article  Google Scholar 

  39. Duan, C.G., Jaswal, S.S., Tsymbal, E.Y.: Predicted magnetoelectric effect in Fe/BaTiO\(_3\) multilayers: ferroelectric control of magnetism. Phys. Rev. Lett. 97(4), 047201 (2006). https://doi.org/10.1103/PhysRevLett.97.047201

    Article  Google Scholar 

  40. Fechner, M., Maznichenko, I.V., Ostanin, S., Ernst, A., Henk, J., Bruno, P., Mertig, I.: Magnetic phase transition in two-phase multiferroics predicted from first principles. Phys. Rev. B (2008). https://doi.org/10.1103/PhysRevB.78.212406

  41. Duan, C.-G., Velev, J.P., Sabirianov, R.F., Mei, W.N., Jaswal, S.S., Tsymbal, E.Y.: Tailoring magnetic anisotropy at the ferromagnetic/ferroelectric interface. Appl. Phys. Lett. 92(12), 122905 (2008). https://doi.org/10.1063/1.2901879

    Article  Google Scholar 

  42. Yamauchi, K., Sanyal, B., Picozzi, S.: Interface effects at a half-metal/ferroelectric junction. Appl. Phys. Lett. 91(6), 062506 (2007). https://doi.org/10.1063/1.2767776

    Article  Google Scholar 

  43. Duan, C.G., Sabirianov, R.F., Mei, W.N., Jaswal, S.S., Tsymbal, E.Y.: Interface effect on ferroelectricity at the nanoscale. Nano Lett. 6(3), 483–487 (2006). https://doi.org/10.1021/nl052452l

    Article  Google Scholar 

  44. Fechner, M., Zahn, P., Ostanin, S., Bibes, M., Mertig, I.: Switching magnetization by 180 degrees with an electric field. Phys. Rev. Lett. 108(19), 197206 (2012). https://doi.org/10.1103/PhysRevLett.108.197206

    Article  Google Scholar 

  45. Chu, Y.H., Martin, L.W., Holcomb, M.B., Gajek, M., Han, S.J., He, Q., Balke, N., Yang, C.H., Lee, D., Hu, W., Zhan, Q., Yang, P.L., Fraile-Rodriguez, A., Scholl, A., Wang, S.X., Ramesh, R.: Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7(6), 478–482 (2008). https://doi.org/10.1038/nmat2184

    Article  Google Scholar 

  46. Heron, J.T., Bosse, J.L., He, Q., Gao, Y., Trassin, M., Ye, L., Clarkson, J.D., Wang, C., Liu, J., Salahuddin, S., Ralph, D.C., Schlom, D.G., Iguez, J., Huey, B.D., Ramesh, R.: Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516(7531), 370–373 (2014). https://doi.org/10.1038/nature14004

  47. Wang, J.J., Hu, J.M., Peng, R.C., Gao, Y., Shen, Y., Chen, L.Q., Nan, C.W.: Magnetization reversal by out-of-plane voltage in BiFeO\(_3\)-based multiferroic heterostructures. Sci. Rep. 5, 10459 (2015). https://doi.org/10.1038/srep10459

    Article  Google Scholar 

  48. Peng, J., Luo, H.-S., Lin, D., Xu, H.-Q., He, T.-H., Jin, W.: Orientation dependence of transverse piezoelectric properties of 0.70Pb(Mg\(_{1/3}\)Nb\(_{2/3}\))O\(_3\)–0.30PbTiO\(_3\) single crystals. Appl. Phys. Lett. 85(25), 6221 (2004). https://doi.org/10.1063/1.1839288

    Article  Google Scholar 

  49. Yi, M., Xu, B.-X.: A real-space and constraint-free phase field model for the microstructure of ferromagnetic shape memory alloys. Int. J. Fract. 202(2), 179–194 (2016). https://doi.org/10.1007/s10704-016-0152-4

    Article  Google Scholar 

  50. Yi, M., Xu, B.X.: A constraint-free phase field model for ferromagnetic domain evolution. Proc. R. Soc. A 470(2171), 20140517 (2014). https://doi.org/10.1098/rspa.2014.0517

    Article  Google Scholar 

  51. Taylor, R.L.: FEAP-A Nite Element Analysis Program. http://www.ce.berkeley.edu/projects/feap/

  52. Sampath, V., D’Souza, N., Bhattacharya, D., Atkinson, G.M., Bandyopadhyay, S., Atulasimha, J.: Acoustic-wave-induced magnetization switching of magnetostrictive nanomagnets from single-Domain to nonvolatile vortex states. Nano Lett. 16(9), 5681–5687 (2016). https://doi.org/10.1021/acs.nanolett.6b02342

    Article  Google Scholar 

  53. Wang, K.L., Alzate, J.G., Khalili Amiri, P.: Low-power non-volatile spintronic memory: STT-RAM and beyond. J. Phys. D Appl. Phys. 46(7), 074003 (2013). https://doi.org/10.1088/0022-3727/46/7/074003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, M., Xu, BX., Müller, R. et al. Strain-mediated magnetoelectric effect for the electric-field control of magnetic states in nanomagnets. Acta Mech 230, 1247–1256 (2019). https://doi.org/10.1007/s00707-017-2029-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2029-7

Navigation