Skip to main content

Advertisement

Log in

Magnus wind turbine: the effect of sandpaper surface roughness on cylinder blades

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The Magnus wind turbine is an invention that uses rotating cylinders as blades to extract energy from the wind. This invention overcomes the limitation of operating a wind turbine at low wind speed conditions. However, research regarding the torque generated by enhancing the surface roughness of the Magnus wind turbine is still lacking. Thus, the study aims to understand the effect of varied sandpaper surface roughnesses on the Magnus wind turbine torque output. The approaches used are: experimentation using a 6 cylinders model inside a wind tunnel for Magnus force comparison, a Magnus wind turbine model for torque performance and smoke flow visualisation for boundary layer analysis. The results show that the torque coefficient produced by P40 sandpaper to smooth the surface roughness is 0.079–0.016, which is nearly a five times improvement in the torque coefficient. On the other hand, the tip speed ratio further increases from smooth to rough surface enhancement (0.057–0.147). This significant finding indicates that the Magnus wind turbine performance can be further improved using sandpaper surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joselin Herbert, G.M., Iniyan, S., Sreevalsan, E., Rajapandian, S.: A review of wind energy technologies. Renew. Sustain. Energy Rev. 11, 1117–1145 (2007). doi:10.1016/j.rser.2005.08.004

    Article  Google Scholar 

  2. Balat, M.: A review of modern wind turbine technology. Energy Sources, Part A Recover. Util. Environ. Eff. 31, 1561–1572 (2009). doi:10.1080/15567030802094045

    Google Scholar 

  3. Islam, M.R., Mekhilef, S., Saidur, R.: Progress and recent trends of wind energy technology. Renew. Sustain. Energy Rev. 21, 456–468 (2013). doi:10.1016/j.rser.2013.01.007

    Article  Google Scholar 

  4. Bychkov, N.M., Dovgal, A.V., Kozlov, V.V.: Magnus wind turbines as an alternative to the blade ones. J. Phys. Conf. Ser. 75, 12004 (2007). doi:10.1088/1742-6596/75/1/012004

    Article  Google Scholar 

  5. Correa, L.C., Lenz, J.M., Ribeiro, C.G., Trapp, J.G., Farret, F.A.: MPPT for Magnus wind turbines based on cylinders rotation speed. In: 2013 Brazilian Power Electronics Conference, pp. 462–467. IEEE (2013)

  6. Kato, H., Koike, S., Nakakita, K., Ito, T., Shiohara, T., Kato, C., Iida, A., Doi, Y., Kato, Y., Miura, Y.: PIV Measurements of Unsteady Flowfields around Magnus Wind Turbines with Spiral Fins (2013)

  7. Sedaghat, A.: Magnus type wind turbines: prospectus and challenges in design and modelling. Renew. Energy. 62, 619–628 (2014)

    Article  Google Scholar 

  8. Goňo, R., Rusek, S., Hrabčík, M., Gono, R., Rusek, S., Hrabcik, M.: Wind turbine cylinders with spiral fins. In: 8th EEEIC International Conference on Environment and Electrical Engineering, pp. 45–48, Karpacz, Poland (2009)

  9. Jinbo, M., Ceretta Moreira, M., Lellis Hoss, D., Farret, F.A., Cardoso Junior, G.: Fixed and adaptive step HCC algorithms for MPPT of the cylinders of Magnus wind turbines. In: 3rd Renewable Power Generation Conference (RPG 2014), pp. 8.36–8.36 (2014)

  10. Murakami, N., Ito, J.: Magnus Type Wind Power Generator, US 7504740B2 (2009)

  11. Murakami, A.N.: Magnus Type Wind Power Generator, US 20100038915A1 (2010)

  12. Seifert, J.: A review of the Magnus effect in aeronautics. Prog. Aerosp. Sci. 55, 17–45 (2012). doi:10.1016/j.paerosci.2012.07.001

    Article  Google Scholar 

  13. Liang, L., Zhao, P., Zhang, S.: Research on hydrodynamic characteristics of Magnus rotor wing at medium/low speed. In: 2016 IEEE International Conference on Mechatronics and Automation, pp. 2413–2418. IEEE (2016)

  14. Massaguer, A., Massaguer, E., Pujol, T., Comamala, M., Velayos, J.: Blade shape influence on aerodynamic efficiency of a Magnus wind turbine using particle image velocimetry. In: International Conference on Renewable Energies and Power Quality (ICREPQ’14), Cordoba, Spain (2014)

  15. Thom, A., Sengupta, S.R.: Air Torque on a Cylinder Rotating in an Air Stream. Aeronautical Research Committee, Reports and Memoranda 1932; 1520 (1932)

  16. Thom, A.: On the effect of discs on the air forces on a rotating cylinder. Aeronautical Research Committee, Reports and Memoranda 1934; 1623 (1934)

  17. Takayama, S., Aoki, K.: Flow characteristics around a rotating grooved circular cylinder with grooves of different depths. J. Vis. 8, 295–303 (2005)

    Article  Google Scholar 

  18. Modi, V.J., Munshi, S.R., Bandyopadhyay, G., Yokomizo, T.: High-performance airfoil with moving surface boundary-layer control. J. Aircr. 35, 544–553 (1998). doi:10.2514/2.2358

    Article  Google Scholar 

  19. Brooks, J.D.: The Effect of a Rotating Cylinder at the leading and Trailing Edges of a Hydrofoil. U.S. Naval Ordnance Test Station (1963)

  20. Kussaiynov, K., Tanasheva, N.K., Turgunov, M.M., Shaimerdenova, G.M., Alibekova, A.R.: The effect of porosity on the aerodynamic characteristics of a rotating cylinder. Mod. Appl. Sci. 9, 215–222 (2015). doi:10.5539/mas.v9n2p215

    Article  Google Scholar 

  21. Hall, R.T.: The Lift and Drag on a Rotating Cylinder in Supersonic Crossflow. Defense Technical Information Center (1960)

  22. Giudice, F., La Rosa, G.: Design, prototyping and experimental testing of a chiral blade system for hydroelectric microgeneration. Mech. Mach. Theory. 44, 1463–1484 (2009). doi:10.1016/j.mechmachtheory.2008.11.010

    Article  MATH  Google Scholar 

  23. Reid, E.G.: Tests of rotating cylinders. NACA Technical Memorandum. TM-209 (1924)

  24. Marzuki, O.F., Rafie, A.M., Romli, F.I., Ahmad, K.A.: An experimental investigation on the effect of surface roughness on the performance of Magnus wind turbine. ARPN J. Eng. Appl. Sci. 10 (20), 9725–9729 (2015)

  25. Marzuki, O.F., Rafie, A.S.M., Romli, F.I., Ahmad, K.A.: Torque performance study of Magnus wind turbine. Int. Rev. Mech. Eng. 9, 38–42 (2015). doi:10.15866/ireme.v9i1.4726

    Google Scholar 

  26. Federation of European Producers of Abrasives FEPA: P-Grit Sizes Coated, http://www.fepa-abrasives.org/Abrasiveproducts/Grains/Pgritsizescoated.aspx

  27. Otsuka, K., Niwa, F., Ikeda, Y.: Forces on and flow around oscillating roughened cylinders—part 1: effect of roughness height. Int. J. Offshore Polar Eng. 5 (1995)

  28. Chen, T.Y., Liou, L.R.: Blockage corrections in wind tunnel tests of small horizontal-axis wind turbines. Exp. Therm. Fluid Sci. 35, 565–569 (2011). doi:10.1016/j.expthermflusci.2010.12.005

    Article  Google Scholar 

  29. de Ridder, E.-J., Otto, W., Zondervan, G.-J., Huijs, F., Vaz, G.: Development of a scaled-down floating wind turbine for offshore basin testing. In: Volume 9A: Ocean Renewable Energy, p. V09AT09A027. ASME (2014)

  30. McTavish, S., Feszty, D., Nitzsche, F.: Evaluating Reynolds number effects in small-scale wind turbine experiments. J. Wind Eng. Ind. Aerodyn. 120, 81–90 (2013). doi:10.1016/j.jweia.2013.07.006

    Article  Google Scholar 

  31. Krahn, E.: Negative Magnus force. J. Aeronaut. Sci. 23, 377 (1956)

    Article  Google Scholar 

  32. Lopez, N.S.A., Mara, B.K.G., Mercado, B.C.C., Mercado, L.A.B., Pascual, J.M.G.: Characterisation of the effects of surface modifications to flow across rotating cylinders using ANSYS CFD modelling. Chem. Eng. 45, 1129–1134 (2015). doi:10.3303/CET1545189

    Google Scholar 

  33. Barlow, J.B., Domanski, M.J.: Lift on stationary and rotating spheres under varying flow and surface conditions. AIAA J. 46, 1932–1936 (2008). doi:10.2514/1.28129

    Article  Google Scholar 

  34. Aoki, K., Muto, K., Okanaga, H.: Aerodynamic characteristics and flow pattern of a golf ball with rotation. Procedia Eng. 2, 2431–2436 (2010). doi:10.1016/j.proeng.2010.04.011

    Article  Google Scholar 

  35. Kray, T., Franke, J., Frank, W.: Magnus effect on a rotating sphere at high Reynolds numbers. J. Wind Eng. Ind. Aerodyn. 110, 1–9 (2012). doi:10.1016/j.jweia.2012.07.005

    Article  Google Scholar 

  36. Kray, T., Franke, J., Frank, W.: Magnus effect on a rotating soccer ball at high Reynolds numbers. J. Wind Eng. Ind. Aerodyn. 124, 46–53 (2014). doi:10.1016/j.jweia.2013.10.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Faruqi Marzuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzuki, O.F., Mohd Rafie, A.S., Romli, F.I. et al. Magnus wind turbine: the effect of sandpaper surface roughness on cylinder blades. Acta Mech 229, 71–85 (2018). https://doi.org/10.1007/s00707-017-1957-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1957-6

Navigation