Skip to main content
Log in

Elastic analysis of variable profile and polar orthotropic FGM rotating disks for a variation function with three parameters

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Analytical solutions are developed for the analysis of elastic polar orthotropic functionally graded annular disks rotating with constant angular velocity. The formulations are carried out by presuming a state of plane stress and small deformations. The elasticity moduli and thickness are varied radially by a nonlinear function controlled by three parameters, while the radial variation of density may be defined by any form of continuous function. Poisson’s ratios are taken to be constant. Annular disks having traction-free inner and outer surfaces, and annular disks mounted on a circular rigid shaft having traction-free outer surface are studied separately. The analytical solutions are verified numerically by the use of a computational model based on the nonlinear shooting method. An analysis that inspects the effects of the degree of orthotropy is presented. Elastic limit angular velocities are determined according to Hosford’s yield criteria. Stress, displacement and strain profiles are compared within the elastic range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, A.I.: Handbook of Mathematical Functions. US Goverment Printing Office, Washington (1970)

    MATH  Google Scholar 

  2. Alexandrova, N., Alexandrov, S.: Elastic–plastic stress distribution in a plastically anisotropic rotating disk. J. Appl. Mech. 71, 427–429 (2004)

    Article  MATH  Google Scholar 

  3. Alexandrova, N., Vila Real, P.M.M.: Deformation and stress analysis of an anisotropic rotating annular disk. Int. J. Comput. Methods Eng. Sci. Mech. 9, 43–50 (2008)

    Article  MATH  Google Scholar 

  4. Argeso, H.: Analytical solutions to variable thickness and variable material property rotating disks for a new three-parameter variation function. Mech. Based Des. Struct. 40, 133–152 (2012)

    Article  Google Scholar 

  5. Banabic, D.: Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation. Springer, Berlin (2010)

    Book  Google Scholar 

  6. Bayat, M., Sahari, B.B., Saleem, M., Hamouda, A.M.S., Mahdi, E., Reddy, J.N.: Thermo elastic analysis of functionally graded rotating disks with temperature-dependent material properties: uniform and variable thickness. Int. J. Mech. Mater. Des. 5, 263–279 (2009)

    Article  Google Scholar 

  7. Bayat, M., Saleem, M., Sahari, B.B., Hamouda, A.M.S., Mahdi, E.: Analysis of functionally graded rotating disks with variable thickness. Mech. Res. Commun. 35, 283–309 (2008)

    Article  MATH  Google Scholar 

  8. Çallıoğlu, H.: Thermal stress analysis of curvilinearly orthotropic rotating discs. J. Thermoplast. Compos. 20, 357–369 (2007)

    Article  Google Scholar 

  9. Çallıoğlu, H., Topcu, M., Altan, G.: Stress analysis of curvilinearly orthotropic rotating discs under mechanical and thermal loading. J. Reinf. Plast. Compos. 24, 831–838 (2005)

    Article  Google Scholar 

  10. Çallıoğlu, H., Topcu, M., Tarakcılar, A.R.: Elastic–plastic stress analysis of an orthotropic rotating disc. Int. J. Mech. Sci. 48, 985–990 (2006)

    Article  MATH  Google Scholar 

  11. Eraslan, A.N.: Elastoplastic deformations of rotating parabolic solid disks using Tresca’s yield criterion. Eur. J. Mech. A Solid 22, 861–874 (2003)

    Article  MATH  Google Scholar 

  12. Eraslan, A.N.: Tresca’s yield criterion and linearly hardening rotating solid disks having hyperbolic profiles. Forsch. Ing. 69, 17–28 (2004)

    Article  Google Scholar 

  13. Eraslan, A.N.: Von Mises’ yield criterion and nonlinearly hardening rotating shafts. Acta Mech. 168, 129–144 (2004)

    Article  MATH  Google Scholar 

  14. Eraslan, A.N.: A class of nonisothermal variable thickness rotating disk problems solved by hypergeometric functions. Turk. J. Eng. Environ. Sci. 29, 241–269 (2005)

    Google Scholar 

  15. Eraslan, A.N.: Stress distributions in elastic–plastic rotating disks with elliptical thickness profiles using Tresca and von Mises criteria. ZAMM Z. Angew. Math. Mech. 85, 252–266 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Eraslan, A.N., Akis, T.: On the plane strain and plane stress solutions of functionally graded rotating solid shaft and solid disk problems. Acta Mech. 181, 43–63 (2006)

    Article  MATH  Google Scholar 

  17. Eraslan, A.N., Argeso, H.: Limit angular velocities of variable thickness rotating disks. Int. J. Solids Struct. 39, 3109–3130 (2002)

    Article  MATH  Google Scholar 

  18. Eraslan, A.N., Argeso, H.: A nonlinear shooting method applied to solid mechanics: part 2. Numerical solution of a plane strain model. Int. J. Nonlinear Anal. Phenom. 2, 31–42 (2005)

    Google Scholar 

  19. Eraslan, A.N., Kartal, E.M.: A nonlinear shooting method applied to solid mechanics: part 1. Numerical solution of a plane stress model. Int. J. Nonlinear Anal. Phenom. 1, 27–40 (2004)

    MATH  Google Scholar 

  20. Eraslan, A.N., Kaya, Y., Varlı, E.: Analytical solutions to orthotropic variable thickness disk problems. Pamukkale Univ. J. Eng. Sci. 22, 24–30 (2016)

    Article  Google Scholar 

  21. Eraslan, A.N., Orcan, Y.: Elastic–plastic deformation of a rotating disk of exponentially varying thickness. Mech. Mater. 34, 423–432 (2002)

    Article  Google Scholar 

  22. Eraslan, A.N., Orcan, Y.: On the rotating elastic–plastic solid disks of variable thickness having concave profiles. Int. J. Mech. Sci. 44, 1445–1466 (2002)

    Article  MATH  Google Scholar 

  23. Gurushankar, G.V.: Thermal stresses in a rotating, nonhomogeneous, anisotropic disk of varying thickness and density. J. Strain Anal. Eng. 10, 137–142 (1975)

    Article  Google Scholar 

  24. Güven, U.: Elastic–plastic stresses in a rotating annular disk of variable thickness and variable density. Int. J. Mech. Sci. 34, 133–138 (1992)

    Article  MATH  Google Scholar 

  25. Güven, U.: Elastic–plastic stress distribution in a rotating hyperbolic disk with rigid inclusion. Int. J. Mech. Sci. 40, 97–109 (1998)

    Article  MATH  Google Scholar 

  26. Hill, R.: The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1950)

    MATH  Google Scholar 

  27. Hill, R.: Theoretical plasticity of textured aggregates. Math. Proc. Camb. Philos. Soc. 85, 179–191 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hindmarsh, A.C.: LSODE and lSODI, two new initial value ordinary differential equation solvers. SIGNUM Newsl. 15, 10–11 (1980)

    Article  Google Scholar 

  29. Hindmarsh, A.C.: ODEPACK: a systematized collection of ODE solvers. In: Stepleman, R.S. (ed.) Volume 1 of IMACS Transactions on Scientific Computation, pp. 55–64. North-Holland, Amsterdam (1983)

    Google Scholar 

  30. Hoffman, J.D.: Numerical Methods for Engineers and Scientists, 2nd edn. Marcel Dekker, New York (2001)

    MATH  Google Scholar 

  31. Horgan, C.O., Chan, A.M.: The stress response of functionally graded isotropic linearly elastic rotating disks. J. Elast. 55, 219–230 (1999)

    Article  MATH  Google Scholar 

  32. Hosford, W.F.: On yield loci of anisotropic cubic metals. In: Proceedings of the 7th North American Metalworking Conference (NMRC), Dearborn (1979)

  33. Hosford, W.F.: Fundamentals of Engineering Plasticity. Cambridge University Press, New York (2013)

    Book  Google Scholar 

  34. Ichikawa, K. (ed.): Functionally Graded Materials in the 21 Century: A Workshop on Trends and Forecasts. Springer, Berlin (2001)

    Google Scholar 

  35. Jain, R., Ramachandra, K., Simha, K.R.Y.: Singularity in rotating orthotropic discs and shells. Int. J. Mech. Sci. 41, 639–648 (1999)

    Article  MATH  Google Scholar 

  36. Johnson, W., Mellor, P.B.: Engineering Plasticity. Von Nostrand Reinhold, London (1978)

    Google Scholar 

  37. Jones, R.M.: Mechanics of Composite Materials. Taylor and Francis, Philadelphia (1999)

    Google Scholar 

  38. Kaw, A.K.: Mechanics of Composite Materials. CRC Press, Boca Raton (2006)

    MATH  Google Scholar 

  39. Kaya, Y.: Analytical and Numerical Solutions to Rotating Orthotropic Disk Problems. Master’s thesis, Middle East Technical University (2007)

  40. Logan, R., Hosford, W.F.: Upper-bound anisotropic yield locus calculations assuming (111)—pencil glide. Int. J. Mech. Sci. 22, 419–430 (1980)

    Article  Google Scholar 

  41. Ma, G., Hao, H., Miyamoto, Y.: Limit angular velocity of rotating disc with unified yield criterion. Int. J. Mech. Sci. 43, 1137–1153 (2001)

    Article  MATH  Google Scholar 

  42. Nie, G.J., Zhong, Z., Batra, R.C.: Material tailoring for orthotropic elastic rotating disks. Compos. Sci. Technol. 71, 406–414 (2011)

    Article  Google Scholar 

  43. Peng, X.L., Li, X.F.: Elastic analysis of rotating functionally graded polar orthotropic disks. Int. J. Mech. Sci. 60, 84–91 (2012)

    Article  Google Scholar 

  44. Radhakrishnan, K., Hindmarsh, A.C.: Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations, Technical Report. UCRL-ID-113855. Lawrence Livermore National Laboratory (1993)

  45. Reddy, T.Y., Srinath, H.: Elastic stresses in a rotating anisotropic annular disk of variable thickness and variable density. Int. J. Mech. Sci. 16, 85–89 (1974)

    Article  Google Scholar 

  46. Rees, D.W.A.: Mechanics of Solids and Structures. Imperial College Press, London (2000)

    Book  MATH  Google Scholar 

  47. Ross, S.L.: Differential Equations. Wiley, New York (1984)

    MATH  Google Scholar 

  48. Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  49. Ugural, A.C., Fenster, S.K.: Advanced Mechanics of Materials and Applied Elasticity. Prentice-Hall, Englewood Cliffs (2011)

    MATH  Google Scholar 

  50. Vullo, V., Vivio, F.: Elastic stress analysis of non-linear variable thickness rotating disks subjected to thermal load and having variable density along the radius. Int. J. Solids Struct. 45, 5337–5355 (2008)

    Article  MATH  Google Scholar 

  51. Vullo, V., Vivio, F.: Rotors: Stress Analysis and Design. Springer, Milan (2013)

    Book  MATH  Google Scholar 

  52. You, L.H., Tang, Y.Y., Zhang, J.J., Zhang, C.Y.: Numerical analysis of elastic–plastic rotating disks with arbitrary variable thickness and density. Int. J. Solids Struct. 37, 7809–7820 (2000)

    Article  MATH  Google Scholar 

  53. You, L.H., You, X.Y., Zhang, J.J., Li, J.: On rotating circular disks with varying material properties. Z. Angew. Math. Phys. 58, 1068–1084 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  54. Zenkour, A.M.: Analytical solutions for rotating exponentially-graded annular disks with various boundary conditions. Int. J. Struct. Stab. Dyn. 5, 557–577 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  55. Zenkour, A.M.: Elastic deformation of the rotating functionally graded annular disk with rigid casing. J. Mater. Sci. 42, 9717–9724 (2007)

    Article  Google Scholar 

  56. Zenkour, A.M.: Stress distribution in rotating composite structures of functionally graded solid disks. J. Mater. Process. Technol. 209, 3511–3517 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Argeso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essa, S., Argeso, H. Elastic analysis of variable profile and polar orthotropic FGM rotating disks for a variation function with three parameters. Acta Mech 228, 3877–3899 (2017). https://doi.org/10.1007/s00707-017-1896-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1896-2

Navigation