Skip to main content
Log in

Influence of a thermal environment on the deflection of magnetostrictive thin films

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The primary application areas of magnetostrictive thin films are in the field of micro-electro-mechanical systems. Devices which use the actuation capability of thin films put to advantage the induced mechanical deformations in them upon being subjected to a magnetic field. In this study, experiments are conducted, in a thermal environment, on Tb–Dy–Fe thin film samples to determine their characteristic magnetization curves. The thin films are subjected to a periodically varying magnetic field of \(\sim \) \(\pm \)0.7 T, in a thermally controlled environment, and the deflections at the tip are measured at elevated temperatures 50, 75 and 100\(^{\circ }\)C. An analytical model constructed from the theories of elasticity, considering transversely isotropic material properties of both the film and the substrate layers, has been proposed to predict the deflections. The study has been extended to predict the tip deflections numerically (Finite Element Method) using COMSOL Multiphysics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kellogg, R.A.: The delta-e effect in terfenol-d and its application in a tunable mechanical resonator. M.S. Thesis, Iowa State University (2000)

  2. Calkins, F.T., Flatau, A.B.: Terfenol-d sensor design and optimization. Report, Iowa State University (2013)

  3. EWI Industries. Rare earth materials, overview—critical military uses

  4. Ludwig, A., Quandt, E.: Giant magnetostrictive thin films for applications in microelectromechanical systems (invited). J. Appl. Phys. 87, 4691 (2000)

    Article  Google Scholar 

  5. Lee, H.S., Cho, C.: Study on advanced multilayered magnetostrictive thin film coating techniques for mems application. J. Mat. Proc. Tech. 201, 678–682 (2008)

    Article  Google Scholar 

  6. Honda, T., et al.: Fabrication of magnetostrictive actuators using rare earth (tb, sm) fe thin films (invited). J. Appl. Phys. 76, 6994 (1994)

    Article  Google Scholar 

  7. Steiner, H., et al.: Planar magnetostrictive micromechanical actuator. IEEE Trans. on Magnetics 51, 4700104 (2015)

  8. Polla, D.L., Francis, L.F.: Ferroelectric thin films in microelectromechanical systems applications. MRS Bulletin 59–65 (1996)

  9. Isikman, S.O., Urey, H.: Dynamic modeling of soft magnetic film actuated scanners. IEEE Trans. Magn. 45, 2912 (2009)

    Article  Google Scholar 

  10. Wang, X., et al.: Experimental study and analytical model of deformation of magnetostrictive films as applied to mirrors for x-ray space telescopes. Appl. Opt. 53, 6256 (2014)

    Article  Google Scholar 

  11. Sandlund, L., et al.: Magnetostriction, elastic moduli, and coupling factors of composite terfenol-d. J. Appl. Phys. 75, 5656 (1994)

    Article  Google Scholar 

  12. Hunter, D. et al.: Giant magnetostriction in annealed Co\(_{\rm 1-x}\) Fe\(_{\rm x}\) thin-films. Nat. Commun. 2:518 (2011). doi:10.1038/ncomms1529

  13. Buford, B., et al.: Measuring the inverse magnetostrictive effect in a thin film using a modified vibrating sample magnetometer. J. Appl. Phys. 115 (2014)

  14. Varghese, R., et al.: Magnetostriction measurement in thin films using laser doppler vibrometry. J. Magn. Magn. Mater. 363, 179–187 (2014)

    Article  Google Scholar 

  15. Chiriac, H., et al.: Magnetoelastic characterization of thin films dedicated to magnetomechanical microsensor applications. Sens. Actuators A Phys. 68, 414–418 (1998)

    Article  Google Scholar 

  16. Dean, J., et al.: Finite element analysis on cantilever beams coated with magnetostrictive material. IEEE Trans. Magn. 42, 283 (2006)

    Article  Google Scholar 

  17. Raghunathan, A., et al.: Comparison of alternative techniques for characterizing magnetostriction and inverse magnetostriction in magnetic thin films. IEEE Trans. Magn. 45, 3269 (2009)

    Article  Google Scholar 

  18. du Tremolet de Lacheisserie, E., Peuzin, J.C.: Magnetostriction and internal stresses in thin films: the cantilever method revisited. J. Magn. Magn. Mater. 136, 189–196 (1994)

    Article  Google Scholar 

  19. Guerrero, Victor H., Wetherhold, Robert C.: Strain and stress calculation in bulk magnetostrictive materials and thin films. J. Magn. Magn. Mater. 271, 190–206 (2004)

    Article  Google Scholar 

  20. Jia, Z., et al.: A nonlinear magnetomechanical coupling model of giant magnetostrictive thin films at low magnetic fields. Sens. Actuators A Phys. 128, 158–164 (2006)

    Article  Google Scholar 

  21. XiaoDong, L.I., et al.: Structure, magnetic properties and giant magnetostriction studies in \([tb/fe/dy]_n\) nano-multilayer film. Chin. Sci. Bull. 54, 608–611 (2009)

    Article  Google Scholar 

  22. Huang, J., et al.: Giant magnetostriction of amorphous \(tb_xfe_{1-x} (0.10<x< 0.45)\) thin films and its correlation with perpendicular anisotropy. Phys. Rev. B 51, 297 (1995)

    Article  Google Scholar 

  23. Quandt, E., Seemann, K.: Fabrication and simulation of magnetostrictive thin-film actuators. Sens. Actuators A Phys. 50, 105–109 (1995)

    Article  Google Scholar 

  24. Ludwig, A., Quandt, E.: Optimization of the \(\delta \)e effect in thin films and multilayers by magnetic field annealing. IEEE Trans. Magn. 38, 2829 (2002)

    Article  Google Scholar 

  25. Sarkozi, Zs, et al.: Elastic properties of magnetostrictive thin films using bending and torsion resonances of a bimorph. J. Appl. Phys. 88, 5827 (2000)

    Article  Google Scholar 

  26. Loffler, M., et al.: Hysteresis of the resonance frequency of magnetostrictive bending cantilevers. J. Appl. Phys. 117, 17A907 (2015)

  27. Mishra, H., et al.: Studies of the magnetostriction in thin films: experimental, analytical and numerical analysis. Sens. Actuators A Phys. 235, 218–226 (2015)

    Article  Google Scholar 

  28. Sander, D.: The correlation between mechanical stress and magnetic anisotropy in ultrathin films. Rep. Prog. Phys. 62, 809–858 (1999)

    Article  Google Scholar 

  29. Linnemann, K., Klinkel, S.: A constitutive model for magnetostrictive materials—theory and finite element implementation. Proc. Appl. Math. Mech. 6, 393–394 (2006)

    Article  Google Scholar 

  30. Linnemann, K., et al.: A constitutive model for magnetostrictive and piezoelectric materials. Int. J. Solids Struct. 46, 1149–1166 (2008)

    Article  MATH  Google Scholar 

  31. Kaajakari, V.: Silicon as an anisotropic mechanical material—a tutorial (2002). http://www.kaajakari.net. Accessed date 20 Mar 2016

  32. Wortman, J.J., Evans, R.A.: Young’s modulus, shear modulus, and poisson’s ratio in silicon and germanium. J. Appl. Phys. 36, 153 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arockiarajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, H., Chelvane, J.A. & Arockiarajan, A. Influence of a thermal environment on the deflection of magnetostrictive thin films. Acta Mech 228, 1909–1921 (2017). https://doi.org/10.1007/s00707-016-1794-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1794-z

Navigation