Skip to main content
Log in

On Hill’s lemma in continuum mechanics

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Hill’s first-order lemma in continuum mechanics has been derived in the literature for quasi-static cases and for dynamic cases in the absence of body forces. In this manuscript, a generalized first-order Hill identity is first derived in an Eulerian dynamic description including body forces. Then, a second-order Hill identity using a Lagrangian description is obtained, involving the variation in time of the associated kinetic energy. Simple examples, that allow for analytical analysis, of one-dimensional elastic deformation of bars are considered that involve dynamics and body forces to illustrate the generalization of Hill’s identities proposed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agnolin, I., Kruyt, N.P.: On the elastic moduli of two-dimensional assemblies of disks, relevance and modeling of fluctuations in particle displacements and rotations. Comput. Math. Appl. 55, 245–256 (2008)

    Article  MATH  Google Scholar 

  2. Agnolin, I., Roux, J.N.: On the elastic moduli of three-dimensional assemblies of spheres: characterization and modeling of fluctuations in the particle displacement and rotation. Int. J. Solids Struct. 45(3–4), 1101–1123 (2008)

    Article  MATH  Google Scholar 

  3. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bagi, K.: Microstructural stress tensor of granular assemblies with volume forces. J. Appl. Mech. 66(4), 934–936 (1999)

    Article  Google Scholar 

  5. Bardet, J.P., Vardoulakis, I.: The asymmetry of stress in granular media. Int. J. Solids Struct. 38(2), 353–367 (2001)

    Article  MATH  Google Scholar 

  6. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Studies in Mathematics and its applications. In: Asymptotic Analysis for Periodic Structures (1978)

  7. Bigoni, D., Hueckel, T.: Uniqueness and localization, I. Associative and non-associative elasto-plasticity. Int. J. Solid. Struct. 28(2), 197–213 (1991)

    Article  MATH  Google Scholar 

  8. Bonelli, S., Millet, O., Nicot, F., Rahmoun, J., de Saxcé, G.: On the definition of an average strain tensor for two-dimensional granular material assemblies. Int. J. Solid. Struct. 49, 947–958 (2012)

    Article  Google Scholar 

  9. Cambou, B., Chaze, M., Dedecker, F.: Change of scale in granular materials. Eur. J. Mech. A/Solids 19, 999–1014 (2000)

  10. Chateau, X., Dormieux, L.: Approche micromécanique du comportement d’un milieu poreux non saturé. C. R. Acad. Sci. 326(Série II b), 533–538 (1998)

    MATH  Google Scholar 

  11. de Saxcé, G., Fortin, J., Millet, O.: About the numerical simulation of the dynamics of granular media and the definition of the mean stress tensor. Mech. Mater. 29, 1175–1184 (2004)

    Article  Google Scholar 

  12. Drescher, A., de Josselin de Jong, G.: Photoelastic verification of a mechanical model for the flow of a granular materials. J. Mech. Phys. Solids 20, 337–351 (1972)

    Article  Google Scholar 

  13. Fortin, J., Millet, O., de Saxcé, G.: Mean stress tensor in a granular medium in dynamics. Mech. Res. Commun. 29, 235–240 (2002)

    Article  MATH  Google Scholar 

  14. Fortin, J., Millet, O., de Saxcé, G.: Construction of an averaged stress tensor for a granular medium. Eur. J. Mech. A Solids 22, 567–582 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gagneux, G., Millet, O.: Homogenization of the Nernst–Planck–Poisson system by two-scale convergence. J. Elast. 114(1), 69–84 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hazanov, S.: Hill condition and overall properties of composites. Arch. Appl. Mech. 68, 385–394 (1998)

    Article  MATH  Google Scholar 

  17. Hill, R.: A general theory of uniqueness and stability in elastic–plastic solids. J. Mech. Phys. Solids 6, 236–249 (1958)

    Article  MATH  Google Scholar 

  18. Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  MATH  Google Scholar 

  19. Jacques, N., Mercier, S., Molinari, A.: Multiscale modelling of voided ductile solids with micro-inertia and application to dynamic crack propagation. In: IUTAM Symposium on Linking Scales in Computations: From Microstructure to Macro-scale Properties, Procedia IUTAM, vol. 3, pp. 53–66 (2012)

  20. Khan, A.S., Huang, S.: Continuum Theory of Plasticity. Wiley, New York (1995)

    MATH  Google Scholar 

  21. Kröner, E.: Statistical Continuum Mechanics. Springer, Berlin (1972)

    MATH  Google Scholar 

  22. Kruyt, N.P., Millet, O., Nicot, F.: Macroscopic strains in granular materials accounting for grain rotations. Granul. Matter 16, 933–944 (2014)

    Article  Google Scholar 

  23. Li, X., Liu, Q.: A version of Hill’s lemma for Cosserat continuum. Acta Mech. Sin. 25, 499–506 (2009). doi:10.1007/s10409-009-0231-0

    Article  MATH  Google Scholar 

  24. Li, X., Zhang, X., Zhang, J.: Extension to failure criterion in granular media. Comput. Methods Appl. Mech. Eng. 199, 3137–3152 (2010a)

    Article  MATH  Google Scholar 

  25. Li, X., Zhang, X., Zhang, J.: A generalized Hill’s lemma and micromechanically based macroscopic constitutive model for heterogeneous granular materials. Comput. Methods Appl. Mech. Eng. 199, 3137–3152 (2010b)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, X., Zhang, J., Zhang, X.: Micro-macro homogenization of gradient-enhanced Cosserat media. Eur. J. Mech. A/Solids 30, 362–372 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, Q.P.: Hill’s lemma for the average-field theory of Cosserat Continuum. Acta Mech. 224, 851–866 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, Q.P.: A new version of Hill’s lemma for Cosserat continuum. Arch. Appl. Mech. 85, 761–773 (2015)

    Article  MATH  Google Scholar 

  29. Maalej, Y., Dormieux, L., Sanahuja, J.: Micromechanical approach to the failure criterion of granular media. Eur. J. Mech. A Solids 28, 647–653 (2009)

    Article  MATH  Google Scholar 

  30. Molinari, A., Mercier, S.: Micromechanical modelling of porous materials under dynamic loading. J. Mech. Phys. Solids 49, 1497–1516 (2001)

    Article  MATH  Google Scholar 

  31. Nanson, E.J.: Note on hydrodynamics. Messenger Math. 3, 120–123 (1878)

    Google Scholar 

  32. Nassar, H., He, Q.-C., Auray, N.: Willis elastodynamic homogenization theory revisited for periodic media. J. Mech. Phys. Solids 77, 158–178 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20(3), 608–623 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nicot, F., Darve, F.: A micro-mechanical investigation of bifurcation in granular materials. Int. J. Solids Struct. 44, 6630–6652 (2007)

    Article  MATH  Google Scholar 

  35. Nicot, F., Darve, F.: The H-microdirectional model: accounting for a mesoscopic scale. Mech. Mater. 43, 918–929 (2011)

    Article  Google Scholar 

  36. Nicot, F., Sibille, L., Darve, F.: Failure in rate-independent granular materials as a bifurcation toward a dynamic regime. Int. J. Plast. 29, 136–154 (2012)

  37. Ostoja-Starzewski, M.: Macrohomogeneity condition in dynamics of micropolar media. Arch. Appl. Mech. 81(7), 899–906 (2011)

    Article  MATH  Google Scholar 

  38. Quintard, M., Whitaker, S.: Two-phase flow in heterogeneous porous media: the method of large-scale averaging. Transp. Porous Media 3(4), 357–413 (1988)

    Article  Google Scholar 

  39. Romo, C.R.: Multiscale modeling and simulation of damage by void nucleation and growth. PhD thesis, California Institute of Technology Pasadena, California (2011)

  40. Sanchez Palencia, E.: Non Homogeneous Media and Vibration Theory. Lecture Notes in Physics (1980)

  41. Torquato, S.: Random Heterogeneous Materials, Microstructure and Macroscopic Properties. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  42. Weber, J.: Recherches concernant les contraintes intergranulaires dans les milieux pulvérulents. Bulletin de Liaison des Ponts-et-Chaussées 20, 1–20 (1966)

    Google Scholar 

  43. Whitaker, S.: A simple geometrical derivation of the spatial averaging theorem. Chem. Eng. Educ. 19(18–21), 50–52 (1985)

    Google Scholar 

  44. Zaoui, A.: Matériaux hétérogènes et composites. Cours de l’Ecole Polytechnique, édition (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Nicot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicot, F., Kruyt, N.P. & Millet, O. On Hill’s lemma in continuum mechanics. Acta Mech 228, 1581–1596 (2017). https://doi.org/10.1007/s00707-016-1776-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1776-1

Navigation