Skip to main content
Log in

Size-dependent dynamic modeling and vibration analysis of MEMS/NEMS-based nanomechanical beam based on the nonlocal elasticity theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Accurate modeling and analysis of micro-/nanoelectromechanical systems (MEMS/NEMS) has an immense contribution in identification and improvement of the performance of such systems. This article investigates a nonclassical formulation for dynamicmodeling and vibration analysis of a piezo-actuatedmicrocantilever considering the Euler–Bernoulli beam model. Regarding the size effects in micro- to nanoscales, the size-dependent nonlocal continuum theory is employed to derive dynamic equations of the nonclassical microbeam taking into account the beam discontinuities. The nonlocal formulation of the beam and piezoelectric actuator is taken into consideration. Furthermore, the size effects on the resonant vibration characteristics of the beam are studied and some results are obtained. The results illustrate the size-dependent behavior of the beam particularly at higher resonant modes of vibrations. Also, it is indicated that the nonlocality and piezoelectric characteristics have a significant influence on the resonance behavior of the beam. However, this effect is more significant at higher resonant modes of vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({\bar{A}_{b}}\) :

Beam cross-sectional area

\({\bar{A}_{p}}\) :

Piezoelectric cross-sectional area

\({\bar{A}_{t}}\) :

Tip cross-sectional area

\({\bar{B}}\) :

Coefficient of viscous air damping

\({\bar{c}_{ijkl}}\) :

Elastic stiffness tensor

\({\bar{c}_{b}}\) :

Young’s modulus of the beam

\({\bar{c}_{p}}\) :

Young’s modulus of the piezoelectric layer along the y-direction

D y :

Electric displacement of the piezoelectric layer along the y-direction

\({\bar{e}_{p}}\) :

Piezoelectric constant

E y :

Electric field of the piezo-layers along the y-direction

H(x):

Heavyside function

k p :

Coefficient of applied voltage

\({\bar{m}_{b}}\) :

Density of the beam

\({\bar{m}_{p}}\) :

Density of the piezoelectric layer

\({\bar{t}_{p}}\) :

Thickness of the piezoelectric layer

\({\bar{t}_{b}}\) :

Thickness of the cantilever

V p :

Piezoelectric applied voltage

\({\bar{v}(x,t)}\) :

Deflection of midplane of the beam

y n :

Neutral axis of each section of the cantilever

\({\bar{w}_{b}}\) :

Width of the cantilever

\({\bar{w}_{t}}\) :

Width of the tip section of the cantilever

\({\bar{w}_{p}}\) :

Width of the piezoelectric layer

\({\bar{x}}\) :

The total length of the nanomechanical cantilever

\({\varepsilon_{xx}}\) :

Strain component along the x-direction

\({\alpha \left|{\vec {r}}\right|}\) :

Nonlocal kernel function

\({\bar{\sigma}_{xx,b}}\) :

Nonlocal stress component in the beam along the x-direction

\({\bar{\sigma}_{xx,p}}\) :

Nonlocal stress component in the piezo-layer along the x-direction

\({\mu}\) :

Nonlocal parameter

\({\mu_{\rm air}}\) :

Viscosity of the air

\({\rho_{\rm air}}\) :

Density of the air

References

  1. Feng C., Jiang L.: Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites. Compos. A Appl. Sci. Manuf. 47, 143–149 (2013)

    Article  Google Scholar 

  2. Kumar S., Haque M.A.: Stress-dependent thermal relaxation effects in micro-mechanical resonators. Acta Mech. 212(1-2), 83–91 (2010)

    Article  MATH  Google Scholar 

  3. Sharma J.N., Grover D.: Thermoelastic vibration analysis of Mems/Nems plate resonators with voids. Acta Mech. 223(1), 167–187 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Korayem, M.H., Taheri, M., Korayem, A.H.: Manipulation with atomic force microscopy: DNA and yeast micro/nanoparticles in biological environments. In: Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 1464419314542544 (2014)

  5. Li Y., Meguid S.A., Fu Y., Xu D.: Unified nonlinear quasistatic and dynamic analysis of RF-MEMS switches. Acta Mech. 224(8), 1741–1755 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feng C., Jiang L., Lau W.M.: Dynamic characteristics of a dielectric elastomer-based microbeam resonator with small vibration amplitude. J. Micromech. Microeng. 21(9), 095002 (2011)

    Article  Google Scholar 

  7. Demir Ç., Akgöz B., Akgöz B.: Free vibration analysis of carbon nanotubes based on shear deformable beam theory by discrete singular convolution technique. Math. Comput. Appl 15(1), 57–65 (2010)

    MATH  Google Scholar 

  8. Wen Y.H., Zhu Z.Z., Zhu R., Shao G.F.: Size effects on the melting of nickel nanowires: a molecular dynamics study. Phys. E Low-dimens. Syst. Nanostruct. 25(1), 47–54 (2004)

    Article  Google Scholar 

  9. Gibbs M.R.J., Hill E.W., Wright P.J.: Magnetic materials for MEMS applications. J. Phys. D Appl. Phys. 37(22), R237 (2004)

    Article  Google Scholar 

  10. Ma J.B., Jiang L., Asokanthan S.F.: Influence of surface effects on the pull-in instability of NEMS electrostatic switches. Nanotechnology 21(50), 505708 (2010)

    Article  Google Scholar 

  11. Esashi M., Ono T.: From MEMS to nanomachine. J. Phys. D Appl. Phys. 38(13), R223 (2005)

    Article  Google Scholar 

  12. Moghimi Zand M., Ahmadian M.T.: Vibrational analysis of electrostatically actuated microstructures considering nonlinear effects. Commun. Nonlinear Sci. Numer. Simul. 14(4), 1664–1678 (2009)

    Article  Google Scholar 

  13. Shirazi M.J., Salarieh H., Alasty A., Shabani R.: Tip tracking control of a micro-cantilever Timoshenko beam via piezoelectric actuator. J. Vib. Control 19(10), 1561–1574 (2013)

    Article  MathSciNet  Google Scholar 

  14. Korayem, M.H., Badkoobeh, H.H., Taheri, M.: Dynamic modeling and simulation of rough cylindrical micro/nanoparticle manipulation with atomic force microscopy. Microsc. Microanal. 20(6), 1692–1707 (2014)

  15. Yan Z., Jiang L.Y.: Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams. J. Appl. Phys. 113(19), 194102 (2013)

    Article  Google Scholar 

  16. Rezazadeh G., Fathalilou M., Shabani R.: Static and dynamic stabilities of a microbeam actuated by a piezoelectric voltage. Microsyst. Technol. 15(12), 1785–1791 (2009)

    Article  Google Scholar 

  17. Lee Y., Lim G., Moon W.: A piezoelectric micro-cantilever bio-sensor using the mass-micro-balancing technique with self-excitation. Microsyst. Technol. 13(5–6), 563–567 (2007)

    Article  Google Scholar 

  18. Salehi-Khojin A., Bashash S., Jalili N., Müller M., Berger R.: Nanomechanical cantilever active probes for ultrasmall mass detection. J. Appl. Phys. 105(1), 013506 (2009)

    Article  Google Scholar 

  19. Biener J., Hodge A.M., Hayes J.R., Volkert C.A., Zepeda-Ruiz L.A., Hamza A.V., Abraham F.F.: Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 6(10), 2379–2382 (2006)

    Article  Google Scholar 

  20. Agrawal R., Peng B., Gdoutos E.E., Espinosa H.D.: Elasticity size effects in ZnO nanowires- a combined experimental-computational approach. Nano Lett. 8(11), 3668–3674 (2008)

    Article  Google Scholar 

  21. Jiang L.Y., Yan Z.: Timoshenko beam model for static bending of nanowires with surface effects. Phys. E Low-dimens. Syst. Nanostruct. 42(9), 2274–2279 (2010)

    Article  MathSciNet  Google Scholar 

  22. Asghari M., Rahaeifard M., Kahrobaiyan M.H., Ahmadian M.T.: The modified couple stress functionally graded Timoshenko beam formulation. Mater. Des. 32(3), 1435–1443 (2011)

    Article  MATH  Google Scholar 

  23. Eringen A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10(5), 425–435 (1972)

    Article  MATH  Google Scholar 

  24. Eringen A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10(1), 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peddieson J., Buchanan G.R., McNitt R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41(3), 305–312 (2003)

    Article  Google Scholar 

  26. Reddy J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2), 288–307 (2007)

    Article  MATH  Google Scholar 

  27. Janghorban M.: Two different types of differential quadrature methods for static analysis of microbeams based on nonlocal thermal elasticity theory in thermal environment. Arch. Appl. Mech. 82(5), 669–675 (2012)

    Article  MATH  Google Scholar 

  28. Zhang Y., Pang M., Chen W.: Non-local modelling on the buckling of a weakened nanobeam. Micro Nano Lett. 8(2), 102–106 (2013)

    Article  Google Scholar 

  29. Lu P., Lee H.P., Lu C., Zhang P.Q.: Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl. Phys. 99(7), 073510 (2006)

    Article  Google Scholar 

  30. Aydogdu M.: Axial vibration of the nanorods with the nonlocal continuum rod model. Phys. E Low-dimens. Syst. Nanostruct. 41(5), 861–864 (2009)

    Article  Google Scholar 

  31. Wang C.M., Zhang Y.Y., He X.Q.: Vibration of nonlocal Timoshenko beams. Nanotechnology 18(10), 105401 (2007)

    Article  Google Scholar 

  32. Nazemizadeh M., Bakhtiari-Nejad F.: Size-dependent free vibration of nano/microbeams with piezo-layered actuators. Micro Nano Lett. 10(2), 93–98 (2015)

    Article  Google Scholar 

  33. Nazemizadeh M., Bakhtiari-Nejad F.: A general formulation of quality factor for composite micro/nano beams in the air environment based on the nonlocal elasticity theory. Compos. Struct. 132(15), 772–783 (2015)

    Article  Google Scholar 

  34. Zhou Z.G., Wu L.Z., Du S.Y.: Non-local theory solution for a Mode I crack in piezoelectric materials. Eur. J. Mech. A Solids 25(5), 793–807 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hosaka H., Itao K.: Theoretical and experimental study on airflow damping of vibrating microcantilevers. J. Vib. Acoust. 121(1), 64–69 (1999)

    Article  Google Scholar 

  36. Jalili N.: Piezoelectric-Based Vibration Control. From Macro to Micro/Nano Scale Systems. Springer, Berlin (2010)

    Book  Google Scholar 

  37. Aydogdu M.: A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys. E Low-dimens. Syst. Nanostruct. 41(9), 1651–1655 (2009)

    Article  Google Scholar 

  38. Salehi-Khojin A., Bashash S., Jalili N.: Modeling and experimental vibration analysis of nanomechanical cantilever active probes. J. Micromech. Microeng. 18(8), 085008 (2008)

    Article  Google Scholar 

  39. Abedinnasab M.H., Kamali Eigoli A., Zohoor H., Vossoughi G.: On the influence of centerline strain on the stability of a bimorph piezo-actuated microbeam. Scientia Iranica 18(6), 1246–1252 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bakhtiari-Nejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhtiari-Nejad, F., Nazemizadeh, M. Size-dependent dynamic modeling and vibration analysis of MEMS/NEMS-based nanomechanical beam based on the nonlocal elasticity theory. Acta Mech 227, 1363–1379 (2016). https://doi.org/10.1007/s00707-015-1556-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1556-3

Keywords

Navigation