Skip to main content
Log in

Nonlocal buckling and vibration analysis of thick rectangular nanoplates using finite strip method based on refined plate theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The buckling and vibration of thick rectangular nanoplates is analyzed in this article. A graphene sheet is theoretically assumed and modeled as a nanoplate in this study. The two-variable refined plate theory (RPT) is applied to obtain the differential equations of the nanoplate. The theory accounts for parabolic variation of transverse shear stress through the thickness of the plate without using a shear correction factor. Besides, the analysis is based on the nonlocal theory of elasticity to take the small-scale effects into account. For the first time, the finite strip method (FSM) based on RPT is employed to study the vibration and buckling behavior of nanoplates and graphene sheets. Hamilton’s principle is employed to obtain the differential equations of the nanoplate. The stiffness, stability and mass matrices of the nanoplate are formed using the FSM. The displacement functions of the strips are evaluated using continuous harmonic function series which satisfy the boundary conditions in one direction and a piecewise interpolation polynomial in the other direction. A matrix eigenvalue problem is solved to find the free vibration frequency and buckling load of the nanoplates subjected to different types of in-plane loadings including the uniform and nonuniform uni-axial and biaxial compression. Comparison studies are presented to verify the validity and accuracy of the proposed nonlocal refined finite strip method. Furthermore, a number of examples are presented to investigate the effects of various parameters (e.g., boundary conditions, nonlocal parameter, aspect ratio, type of loading) on the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim A.K., Novoselov K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  Google Scholar 

  2. Novoselov K.S., Geim A.K., Morozov S., Jiang D., Zhang Y., Dubonos S., Grigorieva I., Firsov A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  Google Scholar 

  3. Luo X., Chung D.: Vibration damping using flexible graphite. Carbon 38(10), 1510–1512 (2000)

    Article  Google Scholar 

  4. Geim A.K.: Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)

    Article  Google Scholar 

  5. Craighead H.G.: Nanoelectromechanical systems. Science 290(5496), 1532–1535 (2000)

    Article  Google Scholar 

  6. Li M., Tang H.X., Roukes M.L.: Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotechnol. 2(2), 114–120 (2007)

    Article  Google Scholar 

  7. Huang X., Qi X., Boey F., Zhang H.: Graphene-based composites. Chem. Soc. Rev. 41(2), 666–686 (2012)

    Article  Google Scholar 

  8. Ball P.: Roll up for the revolution. Nature 414(6860), 142–144 (2001)

    Article  Google Scholar 

  9. Baughman R.H., Zakhidov A.A., Heer W.A.: Carbon nanotubes—the route toward applications. Science 297(5582), 787–792 (2002)

    Article  Google Scholar 

  10. Bodily B., Sun C.: Structural and equivalent continuum properties of single-walled carbon nanotubes. Int. J. Mater. Prod. Technol. 18(4), 381–397 (2003)

    Article  Google Scholar 

  11. Li C., Chou T.-W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40(10), 2487–2499 (2003)

    Article  MATH  Google Scholar 

  12. Li C., Chou T.-W.: Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B 68(7), 073405 (2003)

    Article  Google Scholar 

  13. Toupin R.A.: Elastic materials with couple-stresses. Arch. Rat. Mech. Anal. 11(1), 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fleck N., Muller G., Ashby M., Hutchinson J.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)

    Article  Google Scholar 

  15. Eringen A.C., Suhubi E.: Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 2(2), 189–203 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang G., Feng X., Yu S.: Surface buckling of a bending microbeam due to surface elasticity. EPL (Europhys. Lett.) 77(4), 44002 (2007)

    Article  Google Scholar 

  17. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  Google Scholar 

  18. Eringen A.C.: Nonlocal Continuum Field Theories. Springer, Berlin (2002)

    MATH  Google Scholar 

  19. Eringen A.C., Edelen D.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen Y., Lee J.D., Eskandarian A.: Atomistic viewpoint of the applicability of microcontinuum theories. Int. J. Solids Struct. 41(8), 2085–2097 (2004)

    Article  MATH  Google Scholar 

  21. Peddieson J., Buchanan G.R., McNitt R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41(3), 305–312 (2003)

    Article  Google Scholar 

  22. Lu P., Lee H., Lu C., Zhang P.: Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl. Phys. 99(7), 073510 (2006)

    Article  Google Scholar 

  23. Reddy J.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2), 288–307 (2007)

    Article  MATH  Google Scholar 

  24. Thai H.-T.: A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)

    Article  MathSciNet  Google Scholar 

  25. Heireche H., Tounsi A., Benzair A., Maachou M., Adda Bedia E.: Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity. Phys. E Low-dimens. Syst. Nanostruct. 40(8), 2791–2799 (2008)

    Article  Google Scholar 

  26. Reddy J., Pang S.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103(2), 023511 (2008)

    Article  Google Scholar 

  27. Murmu T., Pradhan S.: Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Phys. E Low-dimens. Syst. Nanostruct. 41(7), 1232–1239 (2009)

    Article  Google Scholar 

  28. Murmu T., Pradhan S.: Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Comput. Mater. Sci. 46(4), 854–859 (2009)

    Article  Google Scholar 

  29. Wang L.: Dynamical behaviors of double-walled carbon nanotubes conveying fluid accounting for the role of small length scale. Comput. Mater. Sci. 45(2), 584–588 (2009)

    Article  Google Scholar 

  30. Shen H.-S., Zhang C.-L.: Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model. Compos. Struct. 92(5), 1073–1084 (2010)

    Article  MathSciNet  Google Scholar 

  31. Aydogdu M.: Axial vibration of the nanorods with the nonlocal continuum rod model. Phys. E Low-dimens. Syst. Nanostruct. 41(5), 861–864 (2009)

    Article  Google Scholar 

  32. Wang C.M., Duan W.: Free vibration of nanorings/arches based on nonlocal elasticity. J. Appl. Phys. 104(1), 014303 (2008)

    Article  Google Scholar 

  33. Duan W., Wang C.M.: Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory. Nanotechnology 18(38), 385704 (2007)

    Article  Google Scholar 

  34. Aghababaei R., Reddy J.: Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates. J. Sound Vib. 326(1), 277–289 (2009)

    Article  Google Scholar 

  35. Wang Y.-Z., Li F.-M., Kishimoto K.: Scale effects on the longitudinal wave propagation in nanoplates. Phys. E Low-dimens. Syst. Nanostruct. 42(5), 1356–1360 (2010)

    Article  Google Scholar 

  36. Behfar K., Naghdabadi R.: Nanoscale vibrational analysis of a multi-layered graphene sheet embedded in an elastic medium. Compos. Sci. Technol. 65(7), 1159–1164 (2005)

    Article  Google Scholar 

  37. He X., Kitipornchai S., Liew K.: Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nanotechnology 16(10), 2086 (2005)

    Article  Google Scholar 

  38. Kitipornchai S., He X., Liew K.: Continuum model for the vibration of multilayered graphene sheets. Phys. Rev. B 72(7), 075443 (2005)

    Article  Google Scholar 

  39. Liew K.M., He X., Kitipornchai S.: Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix. Acta Mater. 54(16), 4229–4236 (2006)

    Article  Google Scholar 

  40. Murmu T., Pradhan S.: Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory. J. Appl. Phys. 105(6), 064319 (2009)

    Article  Google Scholar 

  41. Pradhan S.: Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory. Phys. Lett. A 373(45), 4182–4188 (2009)

    Article  MATH  Google Scholar 

  42. Pradhan S., Murmu T.: Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics. Comput. Mater. Sci. 47(1), 268–274 (2009)

    Article  Google Scholar 

  43. Pradhan S., Phadikar J.: Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models. Phys. Lett. A 373(11), 1062–1069 (2009)

    Article  MATH  Google Scholar 

  44. Sakhaee-Pour A.: Elastic buckling of single-layered graphene sheet. Comput. Mater. Sci. 45(2), 266–270 (2009)

    Article  Google Scholar 

  45. Ansari R., Rajabiehfard R., Arash B.: Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets. Comput. Mater. Sci. 49(4), 831–838 (2010)

    Article  Google Scholar 

  46. Assadi A., Farshi B.: Vibration characteristics of circular nanoplates. J. Appl. Phys. 108(7), 074312 (2010)

    Article  Google Scholar 

  47. Shen L., Shen H.-S., Zhang C.-L.: Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments. Comput. Mater. Sci. 48(3), 680–685 (2010)

    Article  Google Scholar 

  48. Aksencer T., Aydogdu M.: Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory. Phys. E Low-dimens. Syst. Nanostruct. 43(4), 954–959 (2011)

    Article  Google Scholar 

  49. Farajpour A., Danesh M., Mohammadi M.: Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics. Phys. E Low-dimens. Syst. Nanostruct. 44(3), 719–727 (2011)

    Article  Google Scholar 

  50. Hashemi S.H., Samaei A.T.: Buckling analysis of micro/nanoscale plates via nonlocal elasticity theory. Phys. E Low-dimens. Syst. Nanostruct. 43(7), 1400–1404 (2011)

    Article  Google Scholar 

  51. Jomehzadeh E., Saidi A.: Decoupling the nonlocal elasticity equations for three dimensional vibration analysis of nano-plates. Compos. Struct. 93(2), 1015–1020 (2011)

    Article  Google Scholar 

  52. Malekzadeh P., Setoodeh A., Alibeygi Beni A.: Small scale effect on the thermal buckling of orthotropic arbitrary straight-sided quadrilateral nanoplates embedded in an elastic medium. Compos. Struct. 93(8), 2083–2089 (2011)

    Article  Google Scholar 

  53. Malekzadeh P., Setoodeh A., Alibeygi Beni A.: Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates. Compos. Struct. 93(7), 1631–1639 (2011)

    Article  Google Scholar 

  54. Narendar S.: Buckling analysis of micro-/nano-scale plates based on two-variable refined plate theory incorporating nonlocal scale effects. Compos. Struct. 93(12), 3093–3103 (2011)

    Article  Google Scholar 

  55. Pradhan S., Kumar A.: Buckling analysis of single layered graphene sheet under biaxial compression using nonlocal elasticity theory and DQ method. J. Comput. Theor. Nanosci. 8(7), 1325–1334 (2011)

    Article  Google Scholar 

  56. Samaei A., Abbasion S., Mirsayar M.: Buckling analysis of a single-layer graphene sheet embedded in an elastic medium based on nonlocal Mindlin plate theory. Mech. Res. Commun. 38(7), 481–485 (2011)

    Article  MATH  Google Scholar 

  57. Alibeygi Beni A., Malekzadeh P.: Nonlocal free vibration of orthotropic non-prismatic skew nanoplates. Compos. Struct. 94(11), 3215–3222 (2012)

    Article  Google Scholar 

  58. Farajpour A., Shahidi A., Mohammadi M., Mahzoon M.: Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics. Compos. Struct. 94(5), 1605–1615 (2012)

    Article  Google Scholar 

  59. Lin R.: Nanoscale vibration characteristics of multi-layered graphene sheets. Mech. Syst. Signal Process. 29, 251–261 (2012)

    Article  Google Scholar 

  60. Lin R.: Nanoscale vibration characterization of multi-layered graphene sheets embedded in an elastic medium. Comput. Mater. Sci. 53(1), 44–52 (2012)

    Article  Google Scholar 

  61. Analooei H., Azhari M., Heidarpour A.: Elastic buckling and vibration analyses of orthotropic nanoplates using nonlocal continuum mechanics and spline finite strip method. Appl. Math. Model. 37(10), 6703–6717 (2013)

    Article  MathSciNet  Google Scholar 

  62. Sarrami-Foroushani S., Azhari M.: Nonlocal vibration and buckling analysis of single and multi-layered graphene sheets using finite strip method including van der Waals effects. Phys. E Low-dimens. Syst. Nanostruct. 57, 83–95 (2014)

    Article  Google Scholar 

  63. Sarrami-Foroushani S., Azhari M.: On the use of bubble complex finite strip method in the nonlocal buckling and vibration analysis of single-layered graphene sheets. Int. J. Mech. Sci. 85, 168–178 (2014)

    Article  Google Scholar 

  64. Reddy J.: A general non-linear third-order theory of plates with moderate thickness. Int. J. Non-Linear Mech. 25(6), 677–686 (1990)

    Article  MATH  Google Scholar 

  65. Mantari J., Oktem A., Guedes Soares C.: A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates. Int. J. Solids Struct. 49(1), 43–53 (2012)

    Article  Google Scholar 

  66. Sahraee S., Saidi A.: Axisymmetric bending analysis of thick functionally graded circular plates using fourth-order shear deformation theory. Eur. J. Mech. A/Solids 28(5), 974–984 (2009)

    Article  MATH  Google Scholar 

  67. Hamidi, A., Zidi, M., Houari, M.S.A., Tounsi, A.: A new four variable refined plate theory for bending response of functionally graded sandwich plates under thermomechanical loading. Compos. Part B Eng. (2012). doi:10.1016/j.compositesb.2012.03.021

  68. Aydogdu M.: Vibration of multi-walled carbon nanotubes by generalized shear deformation theory. Int. J. Mech. Sci. 50(4), 837–844 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  69. Shimpi R., Patel H.: A two variable refined plate theory for orthotropic plate analysis. Int. J. Solids Struct. 43(22), 6783–6799 (2006)

    Article  MATH  Google Scholar 

  70. Shimpi R., Patel H.: Free vibrations of plate using two variable refined plate theory. J. Sound Vib. 296(4), 979–999 (2006)

    Article  MATH  Google Scholar 

  71. Shimpi R.P.: Refined plate theory and its variants. AIAA J. 40(1), 137–146 (2002)

    Article  Google Scholar 

  72. Kim S.-E., Thai H.-T., Lee J.: Buckling analysis of plates using the two variable refined plate theory. Thin-Walled Struct. 47(4), 455–462 (2009)

    Article  Google Scholar 

  73. Kim S.-E., Thai H.-T., Lee J.: A two variable refined plate theory for laminated composite plates. Compos. Struct. 89(2), 197–205 (2009)

    Article  Google Scholar 

  74. Mechab I., Atmane H.A., Tounsi A., Belhadj H.A.: A two variable refined plate theory for the bending analysis of functionally graded plates. Acta Mech. Sin. 26(6), 941–949 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  75. Thai H.-T., Kim S.-E.: Free vibration of laminated composite plates using two variable refined plate theory. Int. J. Mech. Sci. 52(4), 626–633 (2010)

    Article  Google Scholar 

  76. Ahmed Houari M.S., Benyoucef S., Mechab I., Tounsi A., Adda Bedia E.A.: Two-variable refined plate theory for thermoelastic bending analysis of functionally graded sandwich plates. J. Therm. Stress. 34(4), 315–334 (2011)

    Article  Google Scholar 

  77. Thai H.-T., Kim S.-E.: Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates. Int. J. Mech. Sci. 54(1), 269–276 (2012)

    Article  Google Scholar 

  78. Narendar S., Gopalakrishnan S.: Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory. Acta Mech. 223(2), 395–413 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  79. Satish N., Narendar S., Gopalakrishnan S.: Thermal vibration analysis of orthotropic nanoplates based on nonlocal continuum mechanics. Phys. E Low-dimens. Syst. Nanostruct. 44(9), 1950–1962 (2012)

    Article  Google Scholar 

  80. Prasanna Kumar T.J., Narendar S., Gopalakrishnan S.: Thermal vibration analysis of monolayer graphene embedded in elastic medium based on nonlocal continuum mechanics. Compos. Struct. 100, 332–342 (2013)

    Article  Google Scholar 

  81. Malekzadeh P., Shojaee M.: Free vibration of nanoplates based on a nonlocal two-variable refined plate theory. Compos. Struct. 95, 443–452 (2013)

    Article  Google Scholar 

  82. Ansari R., Sahmani S.: Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations. Appl. Math. Model. 37, 7338–7351 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Azhari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarrami-Foroushani, S., Azhari, M. Nonlocal buckling and vibration analysis of thick rectangular nanoplates using finite strip method based on refined plate theory. Acta Mech 227, 721–742 (2016). https://doi.org/10.1007/s00707-015-1482-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1482-4

Keywords

Navigation