Skip to main content
Log in

On effective properties of materials at the nano- and microscales considering surface effects

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the last years, the rapid increase in the technical capability to control and design materials at the nanoscale has pushed toward an intensive exploitation of new possibilities concerning optical, chemical, thermoelectrical and electronic applications. As a result, new materials have been developed to obtain specific physical properties and performances. In this general picture, it was natural that the attention toward mechanical characterization of the new structures was left, in a sense, behind. Anyway, once the theoretically designed objects proceed toward concrete manufacturing and applications, an accurate and general description of their mechanical properties becomes more and more scientifically relevant. The aim of the paper is therefore to discuss new methods and techniques for modeling the behavior of nanostructured materials considering surface/interface properties, which are responsible for the main differences between nano- and macroscale, and to determine their actual material properties at the macroscale. Our approach is intended to study the mechanical properties of materials taking into account surface properties including possible complex inner microstructure of surface coatings. We use the Gurtin–Murdoch model of surface elasticity. We consider the inner regular and irregular surface thin coatings (i.e., ordered or disordered nanofibers arrays) and present few examples of averaged 2D properties of them. Since the actual 2D properties depend not only on the mechanical properties of fibers or other elements of a coating, but also on the interaction forces between them, the analysis also includes information on the geometry of the microstructure of the coating, on mechanical properties of elements and on interaction forces. Further we use the obtained 2D properties to derive the effective properties of solids and structures at the macroscale, such as the bending stiffness or Young’s modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aifantis E.: Update on a class of gradient theories. Mech. Mater. 35, 259–280 (2003)

    Article  Google Scholar 

  2. Altenbach H., Eremeev V., Morozov N.F.: On equations of the linear theory of shells with surface stresses taken into account. Mech. Solids 45, 331–342 (2010)

    Article  Google Scholar 

  3. Altenbach H., Eremeyev V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49, 1294–1301 (2011)

    Article  MathSciNet  Google Scholar 

  4. Altenbach H., Eremeyev V.A., Lebedev L.P.: On the existence of solution in the linear elasticity with surface stresses. ZAMM 90, 231–240 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Altenbach H., Eremeyev V.A., Lebedev L.P.: On the spectrum and stiffness of an elastic body with surface stresses. ZAMM 91, 699–710 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Altenbach H., Eremeyev V.A., Morozov N.F.: Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. Int. J. Eng. Sci. 59, 83–89 (2012)

    Article  MathSciNet  Google Scholar 

  7. Altenbach, H., Eremeyev, V.A., Morozov, N.F.: Mechanical properties of materials considering surface effects. In: Cocks, A., Wang, J. (eds.) IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures, IUTAM Bookseries (closed), vol. 31, pp. 105–115. Springer, Dordrecht (2013)

  8. Arroyo M., Belytschko T.: An atomistic-based finite deformation membrane for single layer crystalline films. J. Mech. Phys. Solids 50, 1941–1977 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ashby M.F., Evans A.G., Fleck N.A., Gibson L.J., Hutchinson J.W., Wadley H.N.G.: Metal Foams: A Design Guid. Butterworth-Heinemann, Boston (2000)

    Google Scholar 

  10. Askes H., Aifantis E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)

    Article  Google Scholar 

  11. Bažant Z.P.: Size effect. Int. J. Solids Struct. 37, 69–80 (2000)

    Article  MATH  Google Scholar 

  12. Bhushan, B. (ed.): Springer Handbook of Nanotechnology. Springer, Berlin (2007)

  13. Bhushan B., Jung Y.C., Koch K.: Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 1631–1672 (2009)

    Article  Google Scholar 

  14. Chen C., Shi Y., Zhang Y., Zhu J., Yan Y.: Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96, 075505 (2006)

    Article  Google Scholar 

  15. Christensen R.M.: Mechanics of Composite Materials. Dover, New York (2005)

    Google Scholar 

  16. Contreras C.B., Chagas G., Strumia M.C., Weibel D.E.: Permanent superhydrophobic polypropylene nanocomposite coatings by a simple one-step dipping process. Appl. Surf. Sci. 307, 234–240 (2014)

    Article  Google Scholar 

  17. Craighead H.G.: Nanoelectromechanical systems. Science 290, 1532–1535 (2000)

    Article  Google Scholar 

  18. Cuenot S., Frétigny C., Demoustier-Champagne S., Nysten B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410 (2004)

    Article  Google Scholar 

  19. Dastjerdi R., Montazer M.: A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf. B Biointerfaces 79, 5–18 (2010)

    Article  Google Scholar 

  20. Davydov D., Voyiatzis E., Chatzigeorgiou G., Liu S., Steinmann P., Böhm M.C., Müller-Plathe F.: Size effects in a silica–polystyrene nanocomposite: molecular dynamics and surface-enhanced continuum approaches. Soft Mater. 12, S142–S151 (2014)

    Article  Google Scholar 

  21. dell’Isola F., Madeo A., Seppecher P.: Boundary conditions at fluid–permeable interfaces in porous media: a variational approach. Int. J. Solids Struct. 46, 3150–3164 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. dell’Isola F., Rotoli G.: Validity of Laplace formula and dependence of surface tension on curvature in second gradient fluids. Mech. Res. Commun. 22, 485–490 (1995)

    Article  MATH  Google Scholar 

  23. dell’Isola F., Sciarra G., Vidoli S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 465, 2177–2196 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. dell’Isola F., Seppecher P.: The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. Comptes rendus de l’Académie des sciences. Série 2 321, 303–308 (1995)

    MATH  Google Scholar 

  25. dell’Isola F., Seppecher P.: Edge contact forces and quasi-balanced power. Meccanica 32, 33–52 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. dell’Isola F., Seppecher P., Madeo A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la d’Alembert”. ZAMP 63, 1119–1141 (2012)

    MATH  MathSciNet  Google Scholar 

  27. Duan H.L., Karihaloo B.L.: Thermo-elastic properties of heterogeneous materials with imperfect interfaces: generalized Levin’s formula and Hill’s connections. J. Mech. Phys. Solids 55, 1036–1052 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Duan H.L., Wang J., Huang Z.P., Karihaloo B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. In: Aref, H., Van der Giessen, E. (eds.) Advances in Applied Mechanics, vol. 42, pp. 1–68. Elsevier, Amsterdam (2008)

  30. Duan H.L., Wang J., Karihaloo B.L., Huang Z.P.: Nanoporous materials can be made stiffer than non-porous counterparts by surface modification. Acta Mater. 54, 2983–2990 (2006)

    Article  Google Scholar 

  31. Ekinci K.L., Roukes M.L.: Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005)

    Article  Google Scholar 

  32. Eremeyev V., Morozov N.: The effective stiffness of a nanoporous rod. Doklady Phys. 55, 279–282 (2010)

    Article  Google Scholar 

  33. Eremeyev V.A., Altenbach H., Morozov N.F.: The influence of surface tension on the effective stiffness of nanosize plates. Doklady Phys. 54, 98–100 (2009)

    Article  MATH  Google Scholar 

  34. Eremeyev V.A., Lebedev L.P.: Existence of weak solutions in elasticity. Math. Mech. Solids 18, 204–217 (2013)

    Article  MathSciNet  Google Scholar 

  35. Eringen A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  36. Escobar A.M., Llorca-Isern N.: Superhydrophobic coating deposited directly on aluminum. Appl. Surf. Sci. 305, 774–782 (2014)

    Article  Google Scholar 

  37. Ganesh V.A., Raut H.K., Nair A.S., Ramakrishna S.: A review on self-cleaning coatings. J. Mater. Chem. 21, 16304–16322 (2011)

    Article  Google Scholar 

  38. de Gennes P.G.: Some effects of long range forces on interfacial phenomena. J. Phys. Lett. 42, 377–379 (1981)

    Article  Google Scholar 

  39. de Gennes P.G., Brochard-Wyart F., Quéré D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer, New York (2004)

    Book  Google Scholar 

  40. Gent A., Thomas A.: Mechanics of foamed elastic materials. Rubber Chem. Technol. 36, 597–610 (1963)

    Article  Google Scholar 

  41. Gibson L.J., Ashby M.F.: Cellular Solids: Structure and Properties, 2nd edn. Cambridge Solid State Science Series. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  42. Grimm S., Giesa R., Sklarek K., Langner A., Gösele U., Schmidt H.W., Steinhart M.: Nondestructive replication of self-ordered nanoporous alumina membranes via cross-linked polyacrylate nanofiber arrays. Nano Lett. 8, 1954–1959 (2008)

    Article  Google Scholar 

  43. Guo, J.G., Zhao, Y.P.: The size-dependent elastic properties of nanofilms with surface effects. J. Appl. Phys. 98, 074306–11 (2005)

  44. Gurtin M.E., Markenscoff X., Thurston R.N.: Effect of surface stress on natural frequency of thin crystals. Appl. Phys. Lett. 29, 529–530 (1976)

    Article  Google Scholar 

  45. Gurtin M.E., Murdoch A.I.: Addenda to our paper A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 59, 389–390 (1975)

    MATH  MathSciNet  Google Scholar 

  46. Gurtin M.E., Murdoch A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  47. He J., Lilley C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798–1802 (2008)

    Article  Google Scholar 

  48. Heinonen S., Huttunen-Saarivirta E., Nikkanen J.P., Raulio M., Priha O., Laakso J., Storgårds E., Levänen E.: Antibacterial properties and chemical stability of superhydrophobic silver-containing surface produced by sol–gel route. Colloids Surf. A Physicochem. Eng. Aspects 453, 149–161 (2014)

    Article  Google Scholar 

  49. Huang G.Y., Yu S.W.: Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Phys. Status Sol. B 243, R22–R24 (2006)

    Article  Google Scholar 

  50. Huang, Z., Sun, L.: Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis. Acta Mech. 190, 151–163 (2007)

    Article  MATH  Google Scholar 

  51. Huang Z., Wang J.: A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech. 182, 195–210 (2006)

    Article  MATH  Google Scholar 

  52. Huang Z., Wang J.: Micromechanics of nanocomposites with interface energy effect. In: Li, S., Gao, X.L. (eds) Handbook on Micromechanics and Nanomechanics, pp. 303–348. Pan Stanford Publishing, Stanford (2013)

  53. Ibach H.: The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf. Sci. Rep. 29, 195–263 (1997)

    Article  Google Scholar 

  54. Javili A., dell’Isola F., Steinmann P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61, 2381–2401 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  55. Javili A., McBride A., Steinmann P.: Numerical modelling of thermomechanical solids with mechanically energetic (generalised) Kapitza interfaces. Comput. Mater. Sci. 65, 542–551 (2012)

    Article  Google Scholar 

  56. Javili, A., McBride, A., Steinmann, P.: Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl. Mech. Rev. 65, 010802–1–31 (2012)

  57. Javili A., McBride A., Steinmann P., Reddy B.: Relationships between the admissible range of surface material parameters and stability of linearly elastic bodies. Philos. Mag. 92, 3540–3563 (2012)

    Article  Google Scholar 

  58. Javili A., Steinmann P.: A finite element framework for continua with boundary energies. Part I: The two-dimensional case. Comput. Methods Appl. Mech. Eng. 198, 2198–2208 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  59. Javili A., Steinmann P.: A finite element framework for continua with boundary energies. Part II: The three-dimensional case. Comput. Methods Appl. Mech. Eng. 199, 755–765 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  60. Javili A., Steinmann P.: On thermomechanical solids with boundary structures. Int. J. Solids Struct. 47, 3245–3253 (2010)

    Article  MATH  Google Scholar 

  61. Javili A., Steinmann P.: A finite element framework for continua with boundary energies. Part III: The thermomechanical case. Comput. Methods Appl. Mech. Eng. 200, 1963–1977 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  62. Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Wang, Y.D.L.J.X., Yu, D.P.: Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. Phys. Rev. B 73, 235409–6 (2006)

  63. Kampshoff E., Hahn E., Hahn E., Hahn E.: Correlation between surface stress and the vibrational shift of CO chemisorbed on Cu surfaces. Phys. Rev. Lett. 73, 704–707 (1994)

    Article  Google Scholar 

  64. Kang X., Zi W.W., Xu Z.G., Zhang H.L.: Controlling the micro/nanostructure of self-cleaning polymer coating. Appl. Surf. Sci. 253, 8830–8834 (2007)

    Article  Google Scholar 

  65. Kim C., Ru C., Schiavone P.: A clarification of the role of crack-tip conditions in linear elasticity with surface effects. Math. Mech. Solids 18, 59–66 (2013)

    Article  MathSciNet  Google Scholar 

  66. Kim C.I., Schiavone P., Ru C.Q.: Effect of surface elasticity on an interface crack in plane deformations. Proc. R. Soc. A 467, 3530–3549 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  67. Kushch V.I., Chernobai V.S., Mishuris G.S.: Longitudinal shear of a composite with elliptic nanofibers: local stresses and effective stiffness. Int. J. Eng. Sci. 84, 79–94 (2014)

    Article  Google Scholar 

  68. Kushch V.I., Sevostianov I., Chernobai V.S.: Effective conductivity of composite with imperfect contact between elliptic fibers and matrix: Maxwell’s homogenization scheme. Int. J. Eng. Sci. 83, 146–161 (2014)

    Article  MathSciNet  Google Scholar 

  69. Lagowski J., Gatos H.C., Sproles E.S.: Surface stress and normal mode of vibration of thin crystals: GaAs. Appl. Phys. Lett. 26, 493–495 (1975)

    Article  Google Scholar 

  70. Laplace, P.S.: Sur l’action capillaire. supplément à la théorie de l’action capillaire. In: Traité de mécanique céleste, vol. 4. Supplement 1, Livre X, pp. 771–777. Gauthier–Villars et fils, Paris (1805)

  71. Laplace, P.S.: À la théorie de l’action capillaire. supplément à la théorie de l’action capillaire. In: Traité de mécanique céleste, vol. 4. Supplement 2, Livre X, pp. 909–945. Gauthier–Villars et fils, Paris (1806)

  72. Liu K., Jiang L.: Bio-inspired self-cleaning surfaces. Annu. Rev. Mater. Res. 42, 231–263 (2012)

    Article  Google Scholar 

  73. Liu X., Luo J., Zhu J.: Size effect on the crystal structure of silver nanowires. Nano Lett. 6, 408–412 (2006)

    Article  Google Scholar 

  74. Longley, W.R., Name, R.G.V. (eds.): The Collected Works of J. Willard Gibbs, PHD., LL.D. Vol. I Thermodynamics. Longmans, New York (1928)

  75. Lurie S., Belov P.: Gradient effects in fracture mechanics for nano-structured materials. Eng. Fract. Mech. 130, 3–11 (2014)

    Article  Google Scholar 

  76. Lurie S., Volkov-Bogorodsky D., Zubov V., Tuchkova N.: Advanced theoretical and numerical multiscale modeling of cohesion/adhesion interactions in continuum mechanics and its applications for filled nanocomposites. Comput. Mater. Sci. 45, 709–714 (2009)

    Article  Google Scholar 

  77. Lurie S.A., Belov P.A.: Cohesion field: Barenblatt’s hypothesis as formal corollary of theory of continuous media with conserved dislocations. Int. J. Fract. 150, 181–194 (2008)

    Article  MATH  Google Scholar 

  78. Lurie S.A., Kalamkarov A.L.: General theory of continuous media with conserved dislocations. Int. J. Solids Struct. 44, 7468–7485 (2007)

    Article  MATH  Google Scholar 

  79. Ma X., Liu A., Xu H., Li G., Hu M., Wu G.: A large-scale-oriented ZnO rod array grown on a glass substrate via an in situ deposition method and its photoconductivity. Mater. Res. Bull. 43, 2272–2277 (2008)

    Article  Google Scholar 

  80. Melechko A.V., Merkulov V.I., McKnight T.E., Guillorn M., Klein K.L., Lowndes D.H., Simpson M.L.: Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J. Appl. Phys. 97, 041301 (2005)

    Article  Google Scholar 

  81. Michelitsch T., Maugin G., Nowakowski A., Nicolleau F., Rahman M.: The fractional Laplacian as a limiting case of a self-similar spring model and applications to n-dimensional anomalous diffusion. Fract. Calc. Appl. Anal. 16, 827–859 (2013)

    Article  MathSciNet  Google Scholar 

  82. Miller R.E., Shenoy V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139 (2000)

    Article  Google Scholar 

  83. Mindlin R.D.: Second gradient of strain and surface–tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  84. Mishuris G.S.: Interface crack and nonideal interface concept (Mode III). Int. J. Fract. 107, 279–296 (2001)

    Article  Google Scholar 

  85. Mishuris, G.S.: Mode III interface crack lying at thin nonhomogeneous anisotropic interface. Asymptotics near the crack tip. In: Movchan A.B. (ed.) IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics, Solid Mechanics and Its Applications, vol. 113, pp. 251–260. Kluwer, New York (2004)

  86. Mishuris G.S., Kuhn G.: Asymptotic behaviour of the elastic solution near the tip of a crack situated at a nonideal interface. ZAMM 81, 811–826 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  87. Ostoja-Starzewski M.: Lattice models in micromechanics. Appl. Mech. Rev. 55, 35–59 (2002)

    Article  Google Scholar 

  88. Ostoja-Starzewski M., Li J., Joumaa H., Demmie P.: From fractal media to continuum mechanics. ZAMM 94, 373–401 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  89. Özgür Ü., Alivov Y.I., Liu C., Teke A., Reshchikov M., Doğan S., Avrutin V., Cho S.J., Morkoc H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  90. Pan X.H., Yu S.W., Feng X.Q.: A continuum theory of surface piezoelectricity for nanodielectrics. Sci. China Phys. Mech. Astronomy 54, 564–573 (2011)

    Article  Google Scholar 

  91. Podio-Guidugli P., Caffarelli G.V.: Surface interaction potentials in elasticity. Arch. Ration. Mech. Anal. 109, 345–385 (1990)

    Article  Google Scholar 

  92. de Poisson S.D.: Nouvelle théorie de l’action capillaire. Bachelier Père et Fils, Paris (1831)

    Google Scholar 

  93. Povstenko, Y.: Mathematical modeling of phenomena caused by surface stresses in solids. In: Altenbach, H., Morozov, N.F. (eds.) Surface Effects in Solid Mechanics, pp. 135–153. Springer, Berlin (2013)

  94. Rios P., Dodiuk H., Kenig S., McCarthy S., Dotan A.: Transparent ultra-hydrophobic surfaces. J. Adhes. Sci. Technol. 21, 399–408 (2007)

    Article  Google Scholar 

  95. Rosi G., Madeo A., Guyader J.L.: Switch between fast and slow Biot compression waves induced by “second gradient microstructure” at material discontinuity surfaces in porous media. Int. J. Solids Struct. 50, 1721–1746 (2013)

    Article  Google Scholar 

  96. Rowlinson J.S., Widom B.: Molecular Theory of Capillarity. Dover, New York (2003)

    Google Scholar 

  97. Rubin M., Benveniste Y.: A Cosserat shell model for interphases in elastic media. J. Mech. Phys. Solids 52, 1023–1052 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  98. Sanjay, S.L., Annaso, B.G., Chavan, S.M., Rajiv, S.V.: Recent progress in preparation of superhydrophobic surfaces: a review. J. Surf. Eng. Mater. Adv. Technol. 2(2), 1–19, Art ID:18791 (2012)

  99. Schiavone P., Ru C.Q.: Solvability of boundary value problems in a theory of plane–strain elasticity with boundary reinforcement. Int. J. Eng. Sci. 47, 1331–1338 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  100. Sciarra G., dell’Isola F., Coussy O.: Second gradient poromechanics. Int. J. Solids Struct. 44, 6607–6629 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  101. Seppecher, P.: Les fluides de Cahn-Hilliard. Mémoire d’habilitation á diriger des recherches, Université du Sud Toulon (1996)

  102. Sfyris D., Sfyris G., Galiotis C.: Curvature dependent surface energy for a free standing monolayer graphene: some closed form solutions of the non-linear theory. Int. J. Non-Linear Mech. 67, 186–197 (2014)

    Article  Google Scholar 

  103. Shenoy V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104 (2005)

    Article  Google Scholar 

  104. Sigaeva, T., Schiavone, P.: The effect of surface stress on an interface crack in linearly elastic materials. Math. Mech. Solids. (2014). doi:10.1177/1081286514534871

  105. Sigaeva T., Schiavone P.: Solvability of a theory of anti-plane shear with partially coated boundaries. Arch. Mech. 66, 113–125 (2014)

    MATH  MathSciNet  Google Scholar 

  106. Spinelli P., Verschuuren M., Polman A.: Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat. Commun. 3, 692 (2012)

    Article  Google Scholar 

  107. Steigmann D.J., Ogden R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A 453, 853–877 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  108. Steigmann D.J., Ogden R.W.: Elastic surface–substrate interactions. Proc. R. Soc. A 455, 437–474 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  109. Tan L.K., Kumar M.K., An W.W., Gao H.: Transparent, well-aligned TiO2 nanotube arrays with controllable dimensions on glass substrates for photocatalytic applications. ACS Appl. Mater. Interfaces 2, 498–503 (2010)

    Article  Google Scholar 

  110. Tian X., Yi L., Meng X., Xu K., Jiang T., Lai D.: Superhydrophobic surfaces of electrospun block copolymer fibers with low content of fluorosilicones. Appl. Surf. Sci. 307, 566–575 (2014)

    Article  Google Scholar 

  111. Šilhavý M.: A direct approach to nonlinear shells with application to surface–substrate interactions. Math. Mech. Complex Syst. 1, 211–232 (2013)

    Article  MATH  Google Scholar 

  112. Wang G.F., Feng X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90, 231904 (2007)

    Article  Google Scholar 

  113. Wang G.F., Feng X.Q.: Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. EPL Lett. J. Explor. Front. Phys. 91, 56007 (2010)

    Google Scholar 

  114. Wang J., Duan H.L., Huang Z.P., Karihaloo B.L.: A scaling law for properties of nano-structured materials. Proc. R. Soc. A 462, 1355–1363 (2006)

    Article  MATH  Google Scholar 

  115. Wang J., Huang Z., Duan H., Yu S., Feng X., Wang G., Zhang W., Wang T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 52–82 (2011)

    Article  Google Scholar 

  116. Wang X., Wang X., Zhou J., Song J., Liu J., Xu N., Wang Z.L.: Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6, 2768–2772 (2006)

    Article  Google Scholar 

  117. Wang Z.L., Song J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)

    Article  Google Scholar 

  118. Wang Z.Q., Zhao Y.P., Huang Z.P.: The effects of surface tension on the elastic properties of nano structures. Int. J. Eng. Sci. 48, 140–150 (2010)

    Article  Google Scholar 

  119. Yan Z., Jiang L.: Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects. J. Phys. D Appl. Phys. 44, 365301 (2011)

    Article  Google Scholar 

  120. Yan Z., Jiang L.: Surface effects on the electroelastic responses of a thin piezoelectric plate with nanoscale thickness. J. Phys. D Appl. Phys. 45, 255401 (2012)

    Article  Google Scholar 

  121. Young T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)

    Article  Google Scholar 

  122. Zhu H.X., Wang J.X., Karihaloo B.L.: Effects of surface and initial stresses on the bending stiffness of trilayer plates and nanofilms. J. Mech. Mater. Struct. 4, 589–604 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. Eremeyev.

Additional information

The author acknowledges the support within the framework of IRSES Project TAMER (PIRSES-GA-2013-610547).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremeyev, V.A. On effective properties of materials at the nano- and microscales considering surface effects. Acta Mech 227, 29–42 (2016). https://doi.org/10.1007/s00707-015-1427-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1427-y

Keywords

Navigation