Skip to main content
Log in

Size distribution, morphology and fractal characteristics of brittle rock fragmentations by the impact loading effect

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The dynamic fragmentation of three types of brittle rock is examined in this paper by impact experiments using the split Hopkinson pressure bar system. The generalized extreme value distribution is used to characterize the size distribution of the fragments. The results indicate that the slate particles are shaped as a sheet, sandstone fragments appear as irregular prisms, and granite is shaped as a fine grain. Granite is the specimen most easily broken followed by sandstone and slate. The NUM-based cumulative frequency distribution curve moves toward the left as the impact stress increases. Fitted curves of the size distribution of the granite fragments are more intensive at the section of relatively small particle size and become sparser when the particle sizes increase, contrary to the sandstone and slate. Moreover, the aspect ratio of the granite fragments is smaller and more intensive than the other two specimens, even under simple impact conditions. Peak values in the probability density function curves of the fragment size are consistent with the theoretical results. Fractal theory is further used to study the fragmentation features. The results show that the fractal dimension value increases with increased specimen stress, and the fragments of slate and sandstone have smaller values than the granite within a certain range. Additionally, the value is also limited by the fragment size distribution, and the fractal dimension value increases as the dominant fragment size decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amaral P.M., Guerra Rosa L., Cruz Fernandes J.: Fracture toughness of different types of granite. Int. J. Rock Mech. Min. Sci. 36, 839–842 (1999)

    Article  Google Scholar 

  2. Cheong Y.S., Reynolds G.K., Salman A.D., Hounslow M.J.: Modelling fragment size distribution using two-parameter Weibull equation. Int. J. Min. Proc. 74, 227–237 (2004)

    Article  Google Scholar 

  3. De Blasio F.V.: Dynamical stress in force chains of granular media traveling on a bumpy terrain and the fragmentation of rock avalanches. Acta mech. 221, 375–382 (2011)

    Article  MATH  Google Scholar 

  4. De Blasio F.V., Crosta G.B.: Simple physical model for the fragmentation of rock avalanches. Acta Mech. 225, 243–252 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  5. Doll W.: Kinetics of crack tip craze zone before and during fracture. Polymer Eng. Sci. 24, 798–808 (1984)

    Article  Google Scholar 

  6. Funatsu T., Kuruppu M., Matsui K.: Effects of temperature and confining pressure on mixed-mode (I–II) and mode II fracture toughness of Kimachi sandstone. Int. J. Rock Mech. Min. Sci. 67, 1–8 (2014)

    Google Scholar 

  7. Glenn L.A., Chudnovsky A.: Strain-energy effects on dynamic fragmentation. J. Appl. Phys. 59, 1379–1380 (1986)

    Article  Google Scholar 

  8. Grady D.E.: Local inertial effects in dynamic fragmentation. J. Appl. Phys. 53, 322–325 (1982)

    Article  Google Scholar 

  9. Grady D.E.: Length scales and size distributions in dynamic fragmentation. Int. J. Fract. 163, 85–99 (2010)

    Article  MATH  Google Scholar 

  10. Grout H., Tarquis A.M., Wiesner M.R.: Multifractal analysis of particle size distributions in soil. Environ. Sci. Technol. 32, 1176–1182 (1998)

    Article  Google Scholar 

  11. Hogan J.D., Rogers R.J., Spray J.G., Boonsue S.: Dynamic fragmentation of granite for impact energies of 6–28J. Eng. Fract. Mech. 79, 103–125 (2012)

    Article  Google Scholar 

  12. Hogan J.D., Spray J.G., Rogers R.J., Boonsue S., Vincent G., Schneider M.: Micro-scale energy dissipation mechanisms during dynamic fracture in natural polyphase ceramic blocks. Int. J. Impact Eng. 38, 931–939 (2011)

    Article  Google Scholar 

  13. Kulatilake P.H.S.W., Hudaverdi T., Wu Q.: New prediction models for mean particle size in rock blast fragmentation. Geotech. Geol. Eng. 30, 665–684 (2012)

    Article  Google Scholar 

  14. Lockner D.: The role of acoustic emission in the study of rock fracture. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30, 883–899 (1993)

    Article  Google Scholar 

  15. Levy S., Molinari J.F.: Dynamic fragmentation of ceramics, signature of defects and scaling of fragment sizes. J. Mech. Phys. Solids 58, 12–26 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Li D., Zhao F., Zheng M.: Fractal characteristics of cracks and fragments generated in unloading rockburst tests. Int. J. Min. Sci. Technol. 24, 819–823 (2014)

    Article  Google Scholar 

  17. Li T.J., Wang Y.H., Zhang M.Y., Li Q.G., Xu Y., Tan G.H.: Fractal properties of crack in rock and mechanism of rock-burst. Chinese J. Rock Mech. Eng. 19, 6–10 (2000)

    Google Scholar 

  18. Liu X., Zhang G.C., Heathman G.C., Wang Y.Q., Huang C.H.: Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Mountain Yimeng, China. Geoderma. 154, 123–130 (2009)

    Article  Google Scholar 

  19. Liu D., Li D., Zhao F., Wang C.: Fragmentation characteristics analysis of sandstone fragments based on impact rockburst test. J. Rock Mech. Geotech. Eng. 6, 251–256 (2014)

    Article  Google Scholar 

  20. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, M, San Francisco pp. 45–256 (1982)

  21. Mott N.F.: Fragmentation of shell cases. Proc. Royal. Soc. London. Ser. A. Math. Phys. Sci. 189, 300–308 (1947)

    Article  Google Scholar 

  22. Nakamura A., Fujiwara A.: Velocity distribution of fragments formed in a simulated collisional disruption. Icarus 92, 132–146 (1991)

    Article  Google Scholar 

  23. Nagahama H.: Fractal scalings of rock fragmentation. Earth Sci. Frontiers. 7, 169–177 (2000)

    Google Scholar 

  24. Ouchterlony F.: The Swebrec© function: linking fragmentation by blasting and crushing. Mining Technol. 114, 29–44 (2005)

    Article  Google Scholar 

  25. Ping C., Li J.T., Yuan H.P.: Testing study of subcritical crack growth rate and fracture toughness in different rocks. Trans. Nonferrous Met. Soc. China 16, 709–713 (2006)

    Article  Google Scholar 

  26. Sharon E., Gross S.P., Fineberg J.: Energy dissipation in dynamic fracture. Phys. Rev. lett. 76, 2117–2120 (1996)

    Article  Google Scholar 

  27. Sil’vestrov V.V.: Fragmentation of a steel sphere by a high-velocity impact on a highly porous thin bumper. Combust. Explos. Shock Waves 40, 238–252 (2004)

    Article  Google Scholar 

  28. Turcotte D.L.: Fractal fragmentation. J. Geograph. Res. 91, 1921–1926 (1986)

    Google Scholar 

  29. Tyler S.W., Wheatcraft S.W.: Fractal scaling of soil particle size distributions: analysis and limitations. Soil. Sci. Soc. Am. J. 56, 362–369 (1992)

    Article  Google Scholar 

  30. Wang H., Ramesh K.T.: Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression. Acta Mater. 52, 355–367 (2004)

    Article  Google Scholar 

  31. Weibull W.: A statistical theory of the strength of materials. Ingeniorsvetens kapsakademiens Handlingar 151, 1–45 (1939)

    Google Scholar 

  32. Xie H.P., Gao F., Zhou H.W., Zuo J.P.: Fractal fracture and fragmentation in rocks. J. Disaster Prev. Minig. Eng. 23, 1–9 (2013)

    Google Scholar 

  33. Xu G., Li Z., Li P.: Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan River, China. Catena 101, 17–23 (2013)

    Article  Google Scholar 

  34. Zhou F., Molinari J.F., Ramesh K.T.: Effects of material properties on the fragmentation of brittle materials. Int. J. Fract. 139, 169–196 (2006)

    Article  MATH  Google Scholar 

  35. Zhou J.W., Xu W.Y., Yang X.G.: A microcrack damage model for brittle rocks under uniaxial compression. Mech. Res. Commun. 37, 399–405 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-wen Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Tx., Xu, Q. & Zhou, Jw. Size distribution, morphology and fractal characteristics of brittle rock fragmentations by the impact loading effect. Acta Mech 226, 3623–3637 (2015). https://doi.org/10.1007/s00707-015-1409-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1409-0

Keywords

Navigation