Skip to main content

Advertisement

Log in

Free vibration analysis of a functionally graded rectangular plate in contact with a bounded fluid

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This study investigates the vibration analysis of a functionally graded (FG) rectangular plate partially in contact with a bounded fluid. The material properties are assumed to vary continuously through the thickness direction according to a simple power-law distribution in terms of volume fraction of material constituents. Wet dynamic transverse displacements of the plate are approximated by a set of admissible trial functions, which are required to satisfy the clamped and simply supported geometric boundary conditions. The fluid velocity potential satisfying fluid boundary conditions is derived, and wet dynamic modal functions of the plate are expanded in terms of finite Fourier series for compatibility requirement along the contacting surface between the plate and the fluid. Natural frequencies of the plate coupled with sloshing fluid modes are calculated using the Rayleigh–Ritz method based on minimizing the Rayleigh quotient. The proposed analytical method is validated with available data in the literature. In the numerical results, the effects of boundary conditions, aspect ratios, thickness ratios, gradient index, material properties of the FG plate, depth of the fluid and dimensions of the tank on the wet natural frequencies are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khorshidi K.: Effect of hydrostatic pressure on vibrating rectangular plates coupled with fluid. Sci. Iran. Trans. A: Civ. Eng. 17(6), 415–429 (2010)

    Google Scholar 

  2. Amabili M.: Vibrations of circular plates resting on a sloshing liquid: solution of the fully coupled problem. J. Sound Vib. 245(2), 261–283 (2001)

    Article  Google Scholar 

  3. Amabili M.: Eigenvalue problems for vibrating structures coupled with quiescent fluids with free surface. J. Sound vib. 231(1), 79–97 (2000)

    Article  MATH  Google Scholar 

  4. Pellicano F., Amabili M.: Stability and vibration of empty and fluid-filled circular cylindrical shells under static and periodic axial loads. Int. J. Solids Struct. 40, 3229–3251 (2003)

    Article  MATH  Google Scholar 

  5. Jeong K.H., Kim J.W.: Hydrostatic vibration analysis of two flexible rectangular plates partially coupled with liquid. Nuclear Eng. Technol. 41(3), 335–345 (2009)

    Article  MathSciNet  Google Scholar 

  6. Jeong, K.H., Lee, G.M., Kim, T.W., Park, K.B.: Free Vibration of a rectangular plate partially in contact with a liquid at both sides. Trans. Korean Soc. Noise Vib. Eng. 18(1), 123–130 (2008) (in Korean)

  7. Jeong K.H., Yoo G.H., Lee S.C.: Hydroelastic vibration of two identical rectangular plates. J. Sound Vib. 272, 539–555 (2003)

    Article  Google Scholar 

  8. Kwak M.K.: Hydroelastic vibration of rectangular plates. J. Appl. Mech. 63, 110–115 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhou D., Cheung Y.K.: Vibration of vertical rectangular plate in contact with water on one side. Earthq. Eng. Struct. Dyn. 29, 693–710 (2000)

    Article  Google Scholar 

  10. Chang T.P., Liu M.F.: On the natural frequency of a rectangular isotropic plate in contact with fluid. J. Sound Vib. 236, 547–553 (2000)

    Article  Google Scholar 

  11. Ergin A., Uğurlu B.: Linear vibration analysis of cantilever plates partially submerged in fluid. J. Fluids Struct. 17, 927–939 (2003)

    Article  Google Scholar 

  12. Zhou D., Liu W.: Hydroelastic vibrations of flexible rectangular tanks partially filled with fluid. Int. J. Numer. Methods Eng. 71, 149–174 (2007)

    Article  MATH  Google Scholar 

  13. Uğurlu B., Kutlu A., Ergin A., Omurtag M.H.: Dynamics of a rectangular plate resting on an elastic foundation and partially in contact with a quiescent fluid. J. Sound Vib. 317, 308–328 (2008)

    Article  Google Scholar 

  14. Kerboua Y., Lakis A.A., Thomas M., Marcouiller L.: Vibration analysis of rectangular plates coupled with fluid. Appl. Math. Model. 32, 2570–2586 (2000)

    Article  Google Scholar 

  15. Abrate S.: Functionally graded plates behave like homogeneous plates. Compos. Part B Eng. 39, 151–158 (2008)

    Article  Google Scholar 

  16. Zhang D.G., Zhou Y.H.: A theoretical analysis of FGM thin plates based on physical neutral surface. Comput. Mater. Sci. 44, 716–720 (2008)

    Article  Google Scholar 

  17. Woo J., Meguid S.A., Ong L.S.: Nonlinear free vibration behavior of functionally graded plates. J. Sound Vib. 289, 595–611 (2006)

    Article  Google Scholar 

  18. Reddy J.N., Cheng Z.Q.: Frequency of functionally graded plates with three-dimensional asymptotic approach. J. Eng. Mech. ASCE 129, 896–900 (2003)

    Article  Google Scholar 

  19. Qian L.F., Batra R.C., Chen L.M.: Static and dynamic deformations of thick functionally graded elastic plate by using higher-order shear and normal deformable plate theory and meshless local Petrov–Galerkin method. Compos. Part B Eng. 35, 685–697 (2004)

    Article  Google Scholar 

  20. Vel S.S., Batra R.C.: Three-dimensional exact solution for the vibration of functionally graded rectangular plates. J. Sound Vib. 272, 703–730 (2004)

    Article  Google Scholar 

  21. Hosseini-Hashemi Sh., Taher H.R.D., Akhavan H., Omidi M.: Free vibration of Functionally graded rectangular plates use first-order shear deformation plate theory. Appl. Math. Model. 34, 1276–1291 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hosseini-Hashemi Sh., Taher H.R.D., Akhavan H., Omidi M.: Study on the free vibration of thick functionally graded rectangular plates according to the new exact closed-form procedure. Compos. Struct. 93, 722–735 (2011)

    Article  Google Scholar 

  23. Suresh Kumar J., Sidda Reddy B., Eswara Reddy C., VijayaKumar Reddy K.: Higher order theory for free vibration analysis of functionally graded material plates. ARPN J. Eng. Appl. Sci. 6(10), 105–111 (2011)

    Google Scholar 

  24. Jha D.K., Kant T., Singh R.K.: Higher order shear and normal deformation theory for natural frequency of functionally graded rectangular plates. Nuclear Engineering and Design 250, 8–13 (2012)

    Article  Google Scholar 

  25. Zhao X., Lee Y.Y., Liew K.M.: Free vibration analysis of functionally graded plates using the element-free kp-Ritz method. J. Sound Vib. 319, 918–939 (2009)

    Article  Google Scholar 

  26. Huang C.S., McGee O.G., Chang M.J.: Vibrations of cracked rectangular FGM thick plates. Compos. Struct. 93, 1747–1764 (2011)

    Article  Google Scholar 

  27. Thai H.T., Choi D.H.: A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation. Compos. Part B Eng. 43, 2335–2347 (2012)

    Article  Google Scholar 

  28. Zhu P., Liew K.M.: Free vibration analysis of moderately thick functionally graded plates by local Kriging meshless method. Compos. Struct. 93, 2925–2944 (2011)

    Article  Google Scholar 

  29. Tang A.-Y., Wu J.-X., Li X.-F., Lee K.Y.: Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams. Int. J. Mech. Sci. 89, 1–11 (2014)

    Article  Google Scholar 

  30. Liew K.M., Lei Z.X., Yu J.L., Zhang L.W.: Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach. Comput. Methods Appl. Mech. Eng. 268(1), 1–17 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang L.W., Lei Z.X., Liew K.M., Yu J.L.: Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels. Comput. Methods Appl. Mech. Eng. 273, 1–18 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Thai H.-T., Nguyen T.-K., Voc T.P., Lee J.: Analysis of functionally graded sandwich plates using a new first-order shear deformation theory. Eur. J. Mech. A/Solids 45, 211–225 (2014)

    Article  MathSciNet  Google Scholar 

  33. Liew K.M., Zhao X., Ferreira A.J.M.: A review of meshless methods for laminated and functionally graded plates and shells. Compos. Struct. 93, 2031–2041 (2011)

    Article  Google Scholar 

  34. Sayyaadi H., Farsangi M.A.A.: An analytical solution for dynamic behavior of thick doubly curved functionally graded smart panels. Compos. Struct. 107, 88–102 (2014)

    Article  Google Scholar 

  35. Jin G., Su Z., Shi Sa., Ye T., Gao S.: Three-dimensional exact solution for the free vibration of arbitrarily thick functionally graded rectangular plates with general boundary conditions. Compos. Struct. 108, 565–577 (2014)

    Article  Google Scholar 

  36. Akavci S.S.: An efficient shear deformation theory for free vibration of functionally graded thick rectangular plates on elastic foundation. Compos. Struct. 108, 667–676 (2014)

    Article  Google Scholar 

  37. Yang Y., Kou K.P., Iu V.P., Lam C.C., Zhang Ch.: Free vibration analysis of two-dimensional functionally graded structures by a mesh free boundary-domain integral equation method. Compos. Struct. 110, 342–353 (2014)

    Article  Google Scholar 

  38. Zhang L.W., Lei Z.X., Liew K.M.: Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method. Compos. Struct. 120, 189–199 (2015)

    Article  Google Scholar 

  39. Fazzolari F.A.: Natural frequencies and critical temperatures of functionally graded sandwich plates subjected to uniform and non-uniform temperature distributions. Compos. Struct. 121, 197–210 (2015)

    Article  Google Scholar 

  40. Salehipour H., Nahvi H., Shahidi A.R.: Exact closed-form free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimensional elasticity theories. Compos. Struct. 124, 283–291 (2015)

    Article  Google Scholar 

  41. Vaghefi R., Baradaran G.H., Koohkan H.: Three-dimensional static analysis of thick functionally graded plates by using meshless local Petrov–Galerkin (MLPG) method. Eng. Anal. Boundary Elem. 34, 564–573 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hosseini-Hashemi Sh., Kermajani M., Nazemnezhad R.: An analytical study on the buckling and free vibration of rectangular nanoplates using nonlocal third-order shear deformation plate theory. Eur. J. Mech. A/Solids 51, 29–43 (2015)

    Article  MathSciNet  Google Scholar 

  43. Pandey S., Pradyumna S.: Free vibration of functionally graded sandwich plates in thermal environment using a layerwise theory. Eur. J. Mech. A/Solids 51, 55–66 (2015)

    Article  MathSciNet  Google Scholar 

  44. Chakraverty S., Pradhan K.K.: Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions. Aerosp. Sci. Technol. 36, 132–156 (2014)

    Article  Google Scholar 

  45. Salehipour H., Nahvi H., Shahidi A.R.: Exact analytical solution for free vibration of functionally graded micro/nano plates via three-dimensional nonlocal elasticity. Phys. E 66, 350–358 (2015)

    Article  Google Scholar 

  46. Khorshidi K., Farhadi S.: Free vibration analysis of a laminated composite rectangular plate in contact with a bounded fluid. Compos. Struct. 104, 176–186 (2013)

    Article  Google Scholar 

  47. Bishop R.E.D.: The Mechanics of Vibration. Cambridge University Press, New York (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korosh Khorshidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorshidi, K., Bakhsheshy, A. Free vibration analysis of a functionally graded rectangular plate in contact with a bounded fluid. Acta Mech 226, 3401–3423 (2015). https://doi.org/10.1007/s00707-015-1368-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1368-5

Keywords

Navigation