Skip to main content
Log in

Influence of concentrated loading on opening of an interface crack between piezoelectric materials in a compressive field

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A plane problem for an electrically permeable tunnel crack between two piezoelectric half-spaces under concentrated loading applied to the crack faces and remote mixed-mode loading is studied. The elastic displacement and potential jumps as well as the stresses and electrical displacement along the interface are represented via sectionally holomorphic vector functions. At the crack tip, we assume closed crack faces with frictionless contact at the crack tip. The problem is reduced to combined Dirichlet–Riemann boundary value problems that are solved analytically. From these solutions, clear analytical expressions for characteristics of the electromechanical field at the interface are derived. A transcendental equation, which determines the point of separation of the open and closed section of the crack, is found. The stress intensity factors at the crack tip and the energy release rate are calculated. The influence of the magnitude and the locations of the applied concentrated loading upon the contact zone length and the associated fracture mechanical parameters is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sosa H.: Plane problems in piezoelectric media with defects. Int. J. Solids Struct. 28, 491–505 (1991)

    Article  MATH  Google Scholar 

  2. Shindo Y., Tanaka K., Narita F.: Singular stress and electric fields of a piezoelectric ceramic strip with a finite crack under longitudinal shear. Acta Mech. 120, 31–45 (1997)

    Article  MATH  Google Scholar 

  3. Pak Y.E.: Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fract. 54, 79–100 (1992)

    Article  Google Scholar 

  4. Kuna M.: Finite element analyses of crack problem in piezoelectric structures. Comput. Mater. Sci. 13, 67–80 (1998)

    Article  Google Scholar 

  5. Gao C.F., Fan W.X.: Exact solution for the plane problem in piezoelectric materials with an elliptic hole or a crack. Int. J. Solids Struct. 36, 2527–2540 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Xu X.L., Rajapakse R.K.N.D.: On a plane crack in piezoelectric solids. Int. J. Solids Struct. 38, 7643–7658 (2001)

    Article  MATH  Google Scholar 

  7. McMeeking R.M.: The energy release rate for a Griffith crack in a piezoelectric material. Eng. Fract. Mech. 71, 1149–1163 (2004)

    Article  Google Scholar 

  8. Parton V.Z.: Fracture mechanics of piezoelectric materials. Acta Astronaut. 3, 671–683 (1976)

    Article  MATH  Google Scholar 

  9. Kuo C.M., Barnett D.M.: Stress singularities of interfacial cracks in bonded piezoelectric half-spaces. In: Wu, J.J., Ting, T.C.T., Barnett, D.M. (eds.) Modern Theory of Anisotropic Elasticity and Applications, pp. 33–50. SIAM, Philadelphia (1991)

    Google Scholar 

  10. Suo Z., Kuo C.M., Barnet D.M., Willis J.R.: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40, 739–765 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gao C.F., Haeusler C., Balke H.: Periodic permeable interface cracks in piezoelectric materials. Int. J. Solids Struct. 41, 323–335 (2004)

    Article  MATH  Google Scholar 

  12. Ma L.F., Chen Y.H.: Weight functions for interface cracks in dissimilar anisotropic piezoelectric materials. Int. J. Fract. 110, 263–279 (2001)

    Article  Google Scholar 

  13. Beom H.G.: Permeable cracks between two dissimilar piezoelectric materials. Int. J. Solids Struct. 40, 6669–6679 (2003)

    Article  MATH  Google Scholar 

  14. Li Q., Chen Y.H.: Solution of a semi-permeable interface crack in dissimilar piezoelectric materials. J. Appl. Mech. 74, 833–844 (2007)

    Article  Google Scholar 

  15. Beom H.G., Atluri S.N.: Near-tip fields and intensity factors for interfacial cracks in dissimilar anisotropic piezoelectric media. Int. J. Fract. 75, 163–183 (1996)

    Article  Google Scholar 

  16. Ou Z.C., Wu X.: On the crack-tip stress singularity of interfacial cracks in transversely isotropic piezoelectric bimaterials. Int. J. Solids Struct. 40, 7499–7511 (2003)

    Article  MATH  Google Scholar 

  17. Qin Q.H., Yu S.W.: An arbitrarily-oriented plane crack terminating at the interface between dissimilar piezoelectric materials. Int. J. Solids Struct. 34, 581–590 (1997)

    Article  MATH  Google Scholar 

  18. Williams M.L.: The stresses around a fault or cracks in dissimilar media. Bull. Seismol. Soc. Am. 49, 199–204 (1959)

    Google Scholar 

  19. Comninou M.: The interface crack. J. Appl. Mech. 44, 631–636 (1977)

    Article  MATH  Google Scholar 

  20. Atkinson C.: The interface crack with a contact zone (an analytical treatment). Int. J. Fract. 18, 161–177 (1982)

    Google Scholar 

  21. Simonov I.V.: An interface crack in an inhomogeneous stress field. Int. J. Fract. 46, 223–235 (1990)

    Article  Google Scholar 

  22. Gautesen A.K., Dundurs J.: The interface crack under a combined loading. J. Appl. Mech. 55, 580–586 (1988)

    Article  MATH  Google Scholar 

  23. Loboda V.V.: The quasi-invariant in the theory of interface crack. Eng. Fract. Mech. 44, 573–580 (1993)

    Article  Google Scholar 

  24. Qin Q.H., Mai Y.W.: A closed crack tip model for interface cracks in thermopiezoelectric materials. Int. J. Solids Struct. 36, 2463–2479 (1999)

    Article  MATH  Google Scholar 

  25. Herrmann K.P., Loboda V.V., Khodanen T.V.: An interface crack with contact zones in a piezoelectric/piezomagnetic bimaterial. Arch. Appl. Mech. 80, 651–670 (2010)

    Article  MATH  Google Scholar 

  26. Feng W.J., Ma P., Su R.K.L.: An electrically impermeable and magnetically permeable interface crack with a contact zone in magnetoelectroelastic bimaterials under a thermal flux and magnetoelectromechanical loads. Int. J. Solids Struct. 49, 3472–3483 (2012)

    Article  Google Scholar 

  27. Herrmann K.P., Loboda K.P.: Fracture-mechanical assessment of electrically permeable interface cracks in piezoelectric bimaterials by consideration of various contact zone models. Arch. Appl. Mech. 70, 127–143 (2000)

    Article  MATH  Google Scholar 

  28. Herrmann K.P., Loboda V.V., Govorukha V.B.: On contact zone models for an electrically impermeable interface crack in a piezoelectric bimaterial. Int. J. Fract. 111, 203–227 (2001)

    Article  Google Scholar 

  29. Govorukha V., Kamlah M.: On contact zone models for an electrically limited permeable interface crack in a piezoelectric bimaterial. Int. J. Fract. 164, 133–146 (2010)

    Article  MATH  Google Scholar 

  30. Comninou M., Schmueser D.: The interface crack in a combined tension-compression and shear field. J. Appl. Mech. 46, 345–348 (1979)

    Article  MATH  Google Scholar 

  31. Chen Y.H., Han J.J.: Macrocrack-microcrack interaction in piezoelectric materials, Part I: basic formulations and J-analysis. J. Appl. Mech. 66, 514–521 (1999)

    Article  Google Scholar 

  32. Hou P.F., Ding H.J., Guan F.L.: Point forces and point charge applied to a circular crack in transversely isotropic piezoelectric space. Theor. Appl. Fract. Mech. 36, 245–262 (2001)

    Article  Google Scholar 

  33. Parton V.Z., Kudryavtsev B.A.: Electromagnetoelasticity. Gordon and Breach Science Publishers, New York (1988)

    Google Scholar 

  34. Nahmein E.L., Nuller B.M.: Contact of an elastic half plane and a particularly unbonded stamp. Prikl. Math. Mech. 50, 663–678 (1986)

    Google Scholar 

  35. Gakhov F.D.: Boundary Value Problems. Pergamon Press, Oxford (1966)

    MATH  Google Scholar 

  36. Park S.B., Sun C.T.: Fracture criteria for piezoelectric ceramics. J. Am. Ceram. Soc. 78, 1475–1480 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sheveleva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govorukha, V., Kamlah, M. & Sheveleva, A. Influence of concentrated loading on opening of an interface crack between piezoelectric materials in a compressive field. Acta Mech 226, 2379–2391 (2015). https://doi.org/10.1007/s00707-015-1329-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1329-z

Keywords

Navigation