Skip to main content
Log in

Low-velocity impact and minimum mass design of physically asymmetric sandwich beams with metal foam core

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Low-velocity impact of physically asymmetric sandwich beams with metal foam core is investigated theoretically and numerically. A fully clamped slender metal sandwich beam with a physically asymmetric cross section is considered, and the yield criterion for a physically asymmetric sandwich structure is employed in the analysis. Theoretical and numerical analyses are presented to predict the low-velocity impact response of the physically asymmetric sandwich beam. The dynamic, quasi-static and so-called ‘bounds’ solutions are obtained, respectively. It is found that the theoretical predictions are in excellent agreement with the numerical results. Using the analytical formulae, optimal design charts are constructed to maximize the low-velocity impact resistance of physically asymmetric sandwich beams for a given mass. Finally, the performances of optimally designed sandwich beams with various face-sheet material combinations are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashby M.F., Evans A.G., Fleck N.A., Gibson L.J., Hutchinson J.W., Wadley H.N.G.: Metal Foams: A Design Guide. Butterworth Heinemann, Boston (2000)

    Google Scholar 

  2. Evans A.G., Hutchinson J.W., Ashby M.F.: Multifunctionality of cellular metal systems. Prog. Mater. Sci. 43, 171–221 (1998)

    Article  Google Scholar 

  3. Gibson L.J., Ashby M.F.: Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  4. Allen H.G.: Analysis and Design of Structural Sandwich Panels. Pergamon Press, Oxford (1969)

    Google Scholar 

  5. Preissner E.C., Vinson J.R.: Theory for midplane asymmetric sandwich cylindrical shells. J. Sandw. Struct. Mater. 5, 233–251 (2003)

    Article  Google Scholar 

  6. Yoon S.H., Lee D.G.: Design of the composite sandwich panel of the hot pad for the bonding of large area adhesive films. Compos. Struct. 94, 102–113 (2011)

    Article  Google Scholar 

  7. Zhang J.X., Qin Q.H., Ai W.L., Li H.M., Wang T.J.: The failure behavior of geometrically asymmetric metal foam core sandwich beams under three-point bending. ASME J. Appl. Mech. 81, 071008 (2014)

    Article  Google Scholar 

  8. Wang J., Waas A.M., Wang H.: Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels. Compos. Struct. 96, 298–311 (2013)

    Article  Google Scholar 

  9. Tan Z.H., Luo H.H., Long W.G., Han X.: Dynamic response of clamped sandwich beam with aluminium alloy foam core subjected to impact loading. Compos. B Eng. 46, 39–45 (2013)

    Article  Google Scholar 

  10. Damanpack A.R., Shakeri M., Aghdam M.M.: A new finite element model for low-velocity impact analysis of sandwich beams subjected to multiple projectiles. Compos. Struct. 104, 21–33 (2013)

    Article  Google Scholar 

  11. Abrate S.: Impact on Composite Structures. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  12. Yu J.L., Wang E.H., Li J.R., Zheng Z.J.: Static and low-velocity impact behavior of sandwich beams with closed-cell aluminum-foam core in three-point bending. Int. J. Impact Eng. 35, 885–894 (2008)

    Article  Google Scholar 

  13. Mines R.A.W., Worrall C.M., Gibson A.G.: Low velocity perforation behaviour of polymer composite sandwich panels. Int. J. Impact Eng. 21, 855–879 (1998)

    Article  Google Scholar 

  14. Wen H.M., Reddy T.Y., Reid S.R., Soden P.D.: Indentation, penetration and perforation of composite laminate and sandwich panels under quasi-static and projectile loading. Key Eng. Mater. 141, 501–552 (1997)

    Google Scholar 

  15. Gustin J., Joneson A., Mahinfalah M., Stone J.: Low velocity impact of combination Kevlar/carbon fiber sandwich composites. Compos. Struct. 69, 396–406 (2005)

    Article  Google Scholar 

  16. Rajaneesh A., Sridhar I., Rajendran S.: Impact modeling of foam cored sandwich plates with ductile or brittle faceplates. Compos. Struct. 94, 1745–1754 (2012)

    Article  Google Scholar 

  17. Hazizan M.A., Cantwell W.J.: The low velocity impact response of an aluminium honeycomb sandwich structure. Compos. B Eng. 34, 679–687 (2003)

    Article  Google Scholar 

  18. Zhou D.W., Stronge W.J.: Low velocity impact denting of HSSA lightweight sandwich panel. Int. J. Mech. Sci. 48, 1031–1045 (2006)

    Article  MATH  Google Scholar 

  19. Apetre N.A., Sankar B.V., Ambur D.R.: Low-velocity impact response of sandwich beams with functionally graded core. Int. J. Solids Struct. 43, 2479–2496 (2006)

    Article  MATH  Google Scholar 

  20. Malekzadeh K., Khalili M.R., Mittal R.K.: Response of composite sandwich panels with transversely flexible core to low-velocity transverse impact: a new dynamic model. Int. J. Impact Eng. 34, 522–543 (2007)

    Article  Google Scholar 

  21. Li Q.M., Ma G.W., Ye Z.Q.: An elastic–plastic model on the dynamic response of composite sandwich beams subjected to mass impact. Compos. Struct. 72, 1–9 (2006)

    Article  Google Scholar 

  22. Foo C.C., Chai G.B., Seah L.K.: A model to predict low-velocity impact response and damage in sandwich composites. Compos. Sci. Technol. 68, 1348–1356 (2008)

    Article  Google Scholar 

  23. Foo C.C., Seah L.K., Chai G.B.: Low-velocity impact failure of aluminium honeycomb sandwich panels. Compos. Struct. 85, 20–28 (2008)

    Article  Google Scholar 

  24. Qin Q.H., Wang T.J.: Low-velocity heavy-mass impact response of slender metal foam core sandwich beam. Compos. Struct. 93, 1526–1537 (2011)

    Article  Google Scholar 

  25. Qin Q.H., Zhang J.X., Wang Z.J., Wang T.J.: Large deflection of geometrically asymmetric metal foam core sandwich beam transversely loaded by a flat punch. Int. J. Aerosp. Lightweight Struct. 1, 23–46 (2011)

    Article  Google Scholar 

  26. Wang Z.J., Qin Q.H., Zhang J.X., Wang T.J.: Low-velocity impact response of geometrically asymmetric slender sandwich beams with metal foam core. Compos. Struct. 98, 1–14 (2013)

    Article  Google Scholar 

  27. Qin Q.H., Wang M.S., Wang Z.J., Zhang J.X., Wang T.J.: A yield criterion and plastic analysis for physically asymmetric sandwich beam with metal foam core. Int. J. Appl. Mech. 5, 1350037 (2013)

    Article  Google Scholar 

  28. Liu J.H., Jones N.: Dynamic response of a rigid plastic clamped beam struck by a mass at any point on the span. Int. J. Solids Struct. 24, 251–270 (1988)

    Article  MATH  Google Scholar 

  29. Jones N.: Structural Impact. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  30. Deshpande V.S., Fleck N.A.: Isotropic constitutive models for metallic foams. J. Mech. Phys. Solids 48, 1253–1283 (2000)

    Article  MATH  Google Scholar 

  31. Fleck N.A., Deshpande V.S.: The resistance of clamped sandwich beams to shock loading. ASME J. Appl. Mech. 71, 386–401 (2004)

    Article  MATH  Google Scholar 

  32. Tagarielli V.L., Fleck N.A.: A comparison of the structural response of clamped and simply supported sandwich beams with aluminium faces and a metal foam core. ASME J. Appl. Mech. 72, 408–417 (2005)

    Article  MATH  Google Scholar 

  33. Qiu X., Deshpande V.S., Fleck N.A.: Impulsive loading of clamped monolithic and sandwich beams over a central patch. J. Mech. Phys. Solids 53, 1015–1046 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinghua Qin or T. J. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Qin, Q. & Wang, T.J. Low-velocity impact and minimum mass design of physically asymmetric sandwich beams with metal foam core. Acta Mech 226, 1839–1859 (2015). https://doi.org/10.1007/s00707-014-1291-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1291-1

Keywords

Navigation