Skip to main content
Log in

Extended kinetic theory applied to dense, granular, simple shear flows

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We apply the extended kinetic theory (EKT) to the dense, simple shear flow of inelastic hard spheres. EKT is a phenomenological extension of kinetic theory which aims at incorporating in the simplest possible way the role of pre-collisional velocity correlations which are likely to occur at a concentration larger than the freezing point. The main effect of that correlation is the decrease in the rate at which fluctuating energy is dissipated in inelastic collisions. We use previously published results of numerical simulations performed using an event-driven algorithm to obtain analytical expressions for the radial distribution function at contact (which diverges at a concentration lower than the value at random close packing for sheared inelastic spheres) and the correlation length (i.e., the decreasing factor of the dissipation rate) at different values of the coefficient of restitution. With those, we show that when the diffusion of fluctuating energy of the particles is negligible, EKT implies that three branches of the analytical relation between the ratio of the shear stress to the pressure and the concentration (granular rheology) exist. Hence, for a certain value of the stress ratio, up to three corresponding values of the concentration are possible, with direct implications on the existence of multiple solutions to steady granular flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babic M.: Unsteady Couette granular flows. Phys. Fluids 9, 2486–2505 (1997)

    Article  Google Scholar 

  2. Bagnold R.: Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear. Proc. R. Soc. Lond. A 225, 49–63 (1954)

    Article  Google Scholar 

  3. Berzi D.: Analytical solution of collisional sheet flows. J. Hydraul. Eng.-ASCE 137, 1200–1207 (2011)

    Article  Google Scholar 

  4. Berzi, D., Jenkins, J.: Surface flows of inelastic spheres. Phys. Fluids 23, 013303 (2011)

    Google Scholar 

  5. Berzi D., di Prisco C., Vescovi D.: Constitutive relations for steady, dense granular flows. Phys. Rev. E 84, 1–6 (2011)

    Article  Google Scholar 

  6. Boyer F., Guazzelli E., Pouliquen O.: Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 1–5 (2011)

    Article  Google Scholar 

  7. Carnahan N., Starling K.: Equations of state for non-attracting rigid spheres. J. Chem. Phys. 59, 635–636 (1969)

    Article  Google Scholar 

  8. Chialvo, S., Sun, J., Sundaresan, S.: Bridging the rheology of granular flows in three regimes. Phys. Rev. E 85, 021305 (2012)

    Google Scholar 

  9. da Cruz, F., Sacha, E., Prochnow, M., Roux, J., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)

    Google Scholar 

  10. Dahmen K., Ben-Zion Y., Uhl J.: A simple analytic theory for the statistics of avalanches in sheared granular materials. Nat. Phys. 7, 554–557 (2011)

    Article  Google Scholar 

  11. Evans D., Morriss G.: Statistical Mechanics of Nonequilibrium Liquids. Academic Press, London (1990)

    MATH  Google Scholar 

  12. Forterre Y., Pouliquen O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24 (2008)

    Article  MathSciNet  Google Scholar 

  13. Garcia-Rojo, R., Luding, S., Brey, J.: Transport coefficients for dense hard-disk systems. Phys. Rev. E 74, 061305 (2006)

    Google Scholar 

  14. Garzó V., Dufty J.: Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59, 5895–5911 (1999)

    Article  Google Scholar 

  15. GdR-MiDi: On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004)

    Google Scholar 

  16. Goldhirsch I.: Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267–293 (2003)

    Article  MathSciNet  Google Scholar 

  17. Hanes D., Inman D.: Observations of rapidly flowing granular-fluid materials. J. Fluid Mech. 150, 357–380 (1985)

    Article  Google Scholar 

  18. Henann D., Kamrin K.: A predictive, size-dependent continuum model for dense granular flows. Proc. Natl. Acad. Sci. USA 110, 6730–6735 (2013)

    Article  MathSciNet  Google Scholar 

  19. Jenkins, J.: Dense shearing flows of inelastic disks. Phys. Fluids 18, 103307 (2006)

    Google Scholar 

  20. Jenkins J.: Dense inclined flows of inelastic spheres. Granul. Matter 10, 47–52 (2007)

    Article  MATH  Google Scholar 

  21. Jenkins J., Berzi D.: Dense inclined flows of inelastic spheres: tests of an extension of kinetic theory. Granul. Matter 12, 151–158 (2010)

    Article  MATH  Google Scholar 

  22. Jenkins J., Berzi D.: Kinetic theory applied to inclined flows. Granul. Matter 14, 79–84 (2012)

    Article  Google Scholar 

  23. Jenkins J., Savage S.: A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech. 130, 187–202 (1983)

    Article  MATH  Google Scholar 

  24. Johnson P., Jackson R.: Frictional–collisional constitutive relations for granular materials, with application to plane shearing. J. Fluid Mech. 176, 67–93 (1987)

    Article  Google Scholar 

  25. Johnson P., Nott P., Jackson R.: Frictional–collisional equations of motion for particulate flows and their application to chutes. J. Fluid Mech. 210, 501–535 (1990)

    Article  Google Scholar 

  26. Jop P., Forterre Y., Pouliquen O.: Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167–192 (2005)

    Article  MATH  Google Scholar 

  27. Jop P., Forterre Y., Pouliquen O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)

    Article  Google Scholar 

  28. Kamrin, K., Koval, G.: Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108, 178301 (2012)

    Google Scholar 

  29. Khain, E.: Hydrodynamics of fluid-solid coexistence in dense shear granular flow. Phys. Rev. E 75, 051310 (2007)

    Google Scholar 

  30. Khain, E.: Bistability and hysteresis in dense shear granular flow. EPL 87, 14001 (2009)

    Google Scholar 

  31. Kumaran V.: Dynamics of dense sheared granular flows. Part I. Structure and diffusion. J. Fluid Mech. 632, 109–144 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kumaran V.: Dynamics of dense sheared granular flows. Part II. The relative velocity distributions. J. Fluid Mech. 632, 145–198 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lemaître, A., Caroli, C.: Rate-dependent avalanche size in athermally sheared amorphous solids. Phys. Rev. Lett. 103, 065501 (2009)

    Google Scholar 

  34. Lois, G., Carlson, J.: Force networks and the dynamic approach to jamming in sheared granular media. EPL 80(5), 58001 (2007)

    Google Scholar 

  35. Louge, M.: Model for dense granular flows down bumpy inclines. Phys. Rev. E 67, 061303 (2003)

    Google Scholar 

  36. Lun C.: Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres. J. Fluid Mech. 233, 539–559 (1991)

    Article  MATH  Google Scholar 

  37. Majmudar T., Behringer R.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005)

    Article  Google Scholar 

  38. Mitarai, N., Nakanishi, H.: Bagnold scaling, density plateau, and kinetic theory analysis of dense granular flow. Phys. Rev. Lett. 94, 128001 (2005)

    Google Scholar 

  39. Mitarai, N., Nakanishi, H.: Velocity correlations in dense granular shear flows: Effects on energy dissipation and normal stress. Phys. Rev. E 75, 031305 (2007)

    Google Scholar 

  40. Orlando A., Shen H.: Effect of particle size and boundary conditions on the shear stress in an annular shear cell. Granul. Matter 14, 421–423 (2012)

    Article  Google Scholar 

  41. Santos, A., Garzó, V., Dufty, J.: Inherent rheology of a granular fluid in uniform shear flow. Phys. Rev. E 69, 061303 (2004)

    Google Scholar 

  42. Savage S., Sayed M.: Stresses developed by dry cohesionless granular materials sheared in an annular shear cell. J. Fluid Mech. 142, 391–430 (1984)

    Article  Google Scholar 

  43. Song C., Wang P., Makse H.: A phase diagram for jammed matter. Nature 453, 629–632 (2008)

    Article  Google Scholar 

  44. Torquato A.: Nearest-neighbor statistics for packings of hard spheres and disks. Phys. Rev. E 51, 3170–3182 (1995)

    Article  Google Scholar 

  45. Xu H., Louge M., Reeves A.: Solutions of the kinetic theory for bounded collisional granular flows. Continuum Mech. Therm. 15, 321–349 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Berzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berzi, D. Extended kinetic theory applied to dense, granular, simple shear flows. Acta Mech 225, 2191–2198 (2014). https://doi.org/10.1007/s00707-014-1125-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1125-1

Keywords

Navigation