Skip to main content
Log in

Interference of bicarbonate and carbonate anions in the solar disinfection of water

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Sunlight-mediated water disinfection (SODIS) is an important technique, especially when applied in regions where the water treatment system is fragile because the SODIS process has a high capacity for inactivating pathogenic microorganisms. Although the intensity of solar radiation, exposure time, and turbidity of the water are relevant factors for the process, it has also been observed that the chemical composition of the water can interfere with the efficiency of the process. Some chemical species are able to capture radicals that are important for the disinfection process; therefore, the identification of these compounds would contribute to the optimization of the process and increase its efficiency. Thus, the present study aims to evaluate the influence of bicarbonate and carbonate anions using concentrations of Na2CO3 (5, 10, 20, 50, 75, 100, 150, 200, and 300 mg dm−3) on the solar disinfection process in surface water using total coliforms (C0 = 104 UFC.100 cm−3) and Escherichia coli (C0 = 103 UFC.100 cm−3) content as performance parameters for disinfection efficiency. It was observed that in all samples exposed to solar radiation (4 and 5 h), there was a reduction in E. coli and total coliform content when compared to a sample that was not exposed to radiation. However, the addition of carbonate and bicarbonate anions negatively interferes with the disinfection process, reducing the efficiency of SODIS by approximately 0.1 log for E. coli and 0.3 log for CT from a Na2CO3.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cruvinel VRN, Zolnikov TR, Bashash M, Marques CP, Scott JA (2019) Waste Manage 99:71

    Article  Google Scholar 

  2. Ferreira DC, Graziele I, Marques RC, Gonçalves J (2021) Sci Total Environ 779:146279

    Article  CAS  PubMed  Google Scholar 

  3. Nemiwal M, Kumar D (2021) Monatsh Chem 152:1

    Article  CAS  Google Scholar 

  4. Pereira AKS, Teixeira KC, Pereira DH, Cavallini GS (2024) J Water Process Eng 58:04819

    Google Scholar 

  5. Jagai JS, Naumova, EM (2019) Waterborne disease surveillance. In: Encyclopedia of environmental health, 2nd edn. Elsevier, p 406

  6. Chaúque BJM, Rott MB (2021) Chemosphere 281:130754

    Article  PubMed  Google Scholar 

  7. Chu C, Ryberg EC, Loeb SK, Suh M-J, Kim J-H (2019) Acc Chem Res 52:1187

    Article  CAS  PubMed  Google Scholar 

  8. Heaselgrave W, Kilvington S (2012) J Water Health 10:531

    Article  PubMed  Google Scholar 

  9. Pichel N, Vivar M, Fuentes M (2019) Chemosphere 218:1014

    Article  CAS  PubMed  Google Scholar 

  10. Nelson KL, Boehm AB, Davies-Colley RJ, Dodd MC, Kohn T, Linden KG, Liu Y, Maraccini PA, McNeill k, Mitch WA, Nguyen TH, Parker KM, Rodrigues RA, Sassoubre LM, Silverman AI, Wiggintonn KR, Zeppo RG (2018) Environ Sci: Processes Impacts 20:1089

  11. Remucal CK, Manley D (2016) Environ Sci: Water Res Technol 2:565

    CAS  Google Scholar 

  12. Castro-Alférez M, Polo-López MI, Marugán J, Fernández-Ibáñez P (2017) Chem Eng J 316:111

    Article  Google Scholar 

  13. Wang W, Huang G, Yu JC, Wong PK (2015) J Environ Sci 34:232

    Article  CAS  Google Scholar 

  14. Brito NN, Marinho Silva VB (2012) Revista Eletrônica de Engenharia Civil 3. https://doi.org/10.5216/reec.v3i1.17000

  15. Balachandran R, Zhao M, Dong B, Brown I, Raghavan S, Keswani M (2014) Microelectron Eng 130:82

    Article  CAS  Google Scholar 

  16. Moreno-SanSegundo J, Giannakis S, Samoili S, Farinelli G, McGuigan KG, Pulgarin C, Marugan J (2021) Chem Eng J 419:129889

    Article  CAS  Google Scholar 

  17. McGuigan KG, Conroy RM, Mosler H-J, du Preez M, Ubomba-Jaswa E, Ferandez-Ibañez P (2012) J Hazard Mater 235–236:29

    Article  PubMed  Google Scholar 

  18. Kulishenko OY, Klymenko NA, Savchyna LA, Grechanyk SV, Nevyna LV, Patiuk LK, Kostiuk VA, Avramenko LP (2021) J Water Chem Technol 43:448

  19. Gabr ME, Soussa H (2023) Appl Water Sci 13:181

    Article  CAS  Google Scholar 

  20. Honarkar H, Barikani M (2009) Monatsh Chem 140:1403

    Article  CAS  Google Scholar 

  21. Zayed EM, Ismail EH, Mohamed GG Khalil MMH, Kamel AB (2014) Monatsh Chem 145:755

  22. Huang Y, Bu L, Wu Y, Zhu S, Zhou S, Shi Z, Dionysiou DD (2022) Chem Eng J 442:135995

    Article  CAS  Google Scholar 

  23. Bihain MFR, Oh LBC, Teixeira KC, Cavallini GS, Pereira DH (2023) Atmos Pollut Res 14:6

    Article  Google Scholar 

  24. Zeng Y, Wu G (2021) Chin J Catal 42:2149

    Article  CAS  Google Scholar 

  25. Allahyari E, Carraturo F, De Risi A, Nappo A, Morelli M, Cajora A, Marco Guida M (2022) Environ Pollut 304:119224

    Article  CAS  PubMed  Google Scholar 

  26. Alfredo K (2021) Water Res 197:117044

    Article  CAS  PubMed  Google Scholar 

  27. McNeill K, Canonica S (2016) Environ Sci: Processes Impacts 18:1381

    CAS  Google Scholar 

  28. Yan S, Song W (2014) Environ Sci: Processes Impacts 16:697

    CAS  Google Scholar 

  29. Halliwell B (2022) Biochem Biophys Res Commun 633:17

    Article  CAS  PubMed  Google Scholar 

  30. Das Neves APN, Carlos TD, Bezerra LB, Alceno WD, Sarmento AR, Souza NLGD, Pereira DH, Cavallini GS (2021) J Photochem Photobiol A: Chem 420:113511

  31. Castro DA, Cavallini GS, Ferreira DS (2020) Calculadora solar: Calculadora da dose de radiação solar. Versão 2.0. https://ww2.uft.edu.br/index.php/ppgq/links/doc20DOSE%20DE%20RADIA%C3%87%C3%83O%20SOLAR

  32. APHA (2017) Standard methods for the examination of water and wastewater, 23rd edn. American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Washington, DC, USA

  33. Potter DD, Wimsatt JC (2009) Determination of total organic carbon and specific UV absorbance at 254 nm in source water and drinking water; Method 415.3. Rev. 1.2, EPA/600/R-09/122. U.S. Environmental Protection Agency, Cincinnati, OH

Download references

Acknowledgements

The authors would like to thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Coordination for the Improvement of Higher Education Personnel—Brazil), Financing Code 001 CAPES, the FAPT (Fundação de Amparo à Pesquisa—Governo do Tocantins) for a productivity grant, and PROPESQ/UFT (Pró-Reitoria de Pesquisa e Pós Graduação da Universidade Federal do Tocantins) for promoting the translation and publication of scientific articles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Henrique Pereira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 141 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paggiaro, J., Teixeira, C.C., Cavallini, G.S. et al. Interference of bicarbonate and carbonate anions in the solar disinfection of water. Monatsh Chem 155, 583–589 (2024). https://doi.org/10.1007/s00706-024-03206-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-024-03206-3

Keywords

Navigation