Skip to main content
Log in

Novel type of azomethine with combined effects of thiophene cores and vicinal cyano groups

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Through the condensation of 2,5-diaminothiophene-3,4-dicarbonitrile with thiophene-2-carbaldehyde, a new homologue of azomethine-based compounds was achieved. The newly synthesized 2,5-bis-[(thiophen-2-ylmethylene)amino]thiophene-3,4-dicarbonitrile consists of three thiophene cores showing structural similarity to terthiophene, which is commonly employed as a part of the active layers in organic semiconductors. Additionally, the imine linkage (–HC = N–) affects the planar arrangement of the compound, enhancing the effective π-conjugation. As a result, the proximity of FMO (frontier molecular orbitals) of value 3.60 eV between the highest occupied and lowest unoccupied molecular orbital according to the DFT approach (Gamess, B3LYP/6-31g(d,p)), is achieved within the strategy of synthesis of small molecule-based organic semiconductors. The vicinal cyano groups at the Cβ-position of the central thiophene core offer the possibilities of further cyclization towards phthalocyanines and subphthalocyanines.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schiff H (1864) Justus Liebigs Ann Chem 131:118

    Article  Google Scholar 

  2. Xu Y, Shi Y, Lei F, Dai L (2020) Carbohydr Polym 230:115671

    Article  CAS  PubMed  Google Scholar 

  3. Sztanke K, Maziarka A, Osinka A, Sztanke M (2013) Bioorg Med Chem 21:3648

    Article  CAS  PubMed  Google Scholar 

  4. Chigurupati S, Selvaraj M, Mani V, Mohammad JI, Selvarajan KK, Akhtar SS, Marikannan M, Raj S, The LK, Salleh MZ (2018) Med Chem Res 27:807

    Article  CAS  Google Scholar 

  5. Kumar S, Dhar DN, Saxena PN (2009) J Sci Industr Res 68:181

    CAS  Google Scholar 

  6. Bozorov K, Zhao JY, Nie LF, Ma HR, Bobakulov K, Hu R, Rustamova N, Huang G, Efferth T, Aisa HA (2017) RSC Adv 7:132

  7. Brodowska K, Łodyga-Chruścińska E (2014) Chemik 2:31417

    Google Scholar 

  8. Bhatti MP, Sagir M, Naz MY (2014) Novel Schiff bases transition metal complexes: biological applications. Scholar’s Press, Chisinau

    Google Scholar 

  9. Ram N, Kaushik J, Piyush S (2014) Schiff base metal complexes. Lambert Academic Publishing, Chisinau

    Google Scholar 

  10. Cisterna J, Artigas V, Fuentealba M, Hamon P, Manzur C, Hamon JR, Carrillo D (2017) Inorganics 6:5

    Article  Google Scholar 

  11. Goldbedaghi R, Fausto R (2018) Polyhedron 155:1

    Article  Google Scholar 

  12. Kumar S, Dhar DN, Saxena PN (2009) J Sci Ind Res 68:181

    CAS  Google Scholar 

  13. Upadhyay KK, Kumar A, Upadhyay S, Mishra PC (2008) J Mol Struct 873:5

    Article  CAS  Google Scholar 

  14. Puterová Z, Valentová J, Bojková Z, Kožíšek J, Devínsky F (2011) Dalton Trans 40:1484

    Article  PubMed  Google Scholar 

  15. Andruh M (2011) Chem Commun 47:3025

    Article  CAS  Google Scholar 

  16. Puterová-Tokárová Z, Mrázová V, Boča R (2013) Polyhedron 61:87

    Article  Google Scholar 

  17. Puterová-Tokárová Z, Mrázová V, Valentová J, Bojková Z, Kožíšek J, Boča R (2014) Polyhedron 70:58

    Article  Google Scholar 

  18. Zhang J, Xu L, Wong WY (2018) Coord Chem Rev 355:180

    Article  CAS  Google Scholar 

  19. Legros J, Dehli JR, Bolm C (2005) Adv Synth Catal 347:19

    Article  CAS  Google Scholar 

  20. Zhang YY, Tan R, Zhao G-W, Luo X-F, Xing C, Yin D-H (2006) J Catal 335:62

    Article  Google Scholar 

  21. Tang J, Yao P, Wang L, Bian H, Luo M, Huang F (2018) RSC Adv 8:40720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang S, Men G, Zhao L, Hou Q, Jiang S (2010) Chem 145:826

    CAS  Google Scholar 

  23. Nassar AM (2016) Synth React Inorg Met-Org Nano-Met Chem 46:1349

    Article  CAS  Google Scholar 

  24. Tokárová Z, Maxianová P, Váry T, Nádaždy V, Végh D, Tokár K (2020) J Mol Struct 1204:127492

    Article  Google Scholar 

  25. Musikavanhu B, Muthusamy S, Zhu D, Xue Z, Yu Q, Chiyumba CN, Mack J, Nyokonge T, Wang S, Zhao L (2022) Spectrochim Acta A Mol Biomol Spectrosc 264:120338

    Article  CAS  PubMed  Google Scholar 

  26. Işik D, Santato C, Barik S, Skene WG (2012) Org Electron 13:3022

    Article  Google Scholar 

  27. Kiriy N, Bocharova V, Kiriy A, Stamm M, Krebs FC, Adler HJ (2004) Chem Mater 16:4765

    Article  CAS  Google Scholar 

  28. Andicsová-Eckstein A, Tokár K, Kozma E, Tokárová Z (2017) New J Chem 24:14871

    Article  Google Scholar 

  29. Ermiş E, Aydın A, Ünver H, Sezen S, Mutlu MB (2020) Spectrochim Acta A Mol Biomol Spectrosc 243:118761

    Article  PubMed  Google Scholar 

  30. Ermiş E, Durmuş K (2020) J Mol Struct 1217:128354

    Article  Google Scholar 

  31. Kotowicz S, Siwy M, Golba S, Malecki JG, Janeczek H, Smolarek K, Szalkowski M, Sek D, Libera M, Mackowski S, Schab-Balcerzak E (2017) J Lumin 192:452

    Article  CAS  Google Scholar 

  32. Delgado-Montiel T, Soto-Rojo R, Baldenebro-López J, Glossman-Mitnik D (2019) Molecules 24:3897

    Article  CAS  PubMed Central  Google Scholar 

  33. Asatkar AK, Senanayak SP, Bedi A, Panda S, Narayan KS, Zade SS (2014) Chem Commun 50:7036

    Article  CAS  Google Scholar 

  34. Pietrangelo A, Sih BC, Boden BN, Wang Z, Li Q, Chou KC, MacLachlan MJ, Wolf MO (2008) Adv Mater 20:2280

    Article  CAS  Google Scholar 

  35. Ermis E, Durmus K, Aygüzer ÖU, Berber H, Güllü M (2018) J Mol Struct 1168:115

    Article  CAS  Google Scholar 

  36. Schmeyers J, Toda F, Boy J, Kaupp G (1998) J Chem Soc. Perkin Trans 1(2):989

    Article  Google Scholar 

  37. D’alelio GF, Crivello JV, Schoenig RK, Huemmer TF (1967) J Macromol Sci A 1:1251

    Article  Google Scholar 

  38. Sprung MA (1940) Chem Rev 26:297

    Article  CAS  Google Scholar 

  39. Gewald K, Kleinert M, Thiele B, Hentschel M (1992) J Prakt Chem 314:303

    Article  Google Scholar 

  40. Petrus ML, Bein T, Dingemans TJ, Docampo P (2015) J Mat Chem A 3:12159

    Article  CAS  Google Scholar 

  41. Végh D, Landl M, Pavlovičová R, Kuzmany H, Zalupsky P (1995) Chem Heterocycl Comp 31:1238

    Article  Google Scholar 

  42. Dufrense S, Skene D (2012) J Phys Org Chem 25:211

    Article  Google Scholar 

  43. Milde D, Urbańczyk L, Figura M, Piś W (2019) Pol J Chem Technol 21:24

    Article  CAS  Google Scholar 

  44. Xu H, Jiang X-J, Chan EYM, Fong W-P, Ng DKP (2007) Org Biomol Chem 5:3987

    Article  CAS  PubMed  Google Scholar 

  45. Yarasir MN, Kandaz M, Senkal BF, Koca A, Salih B (2008) Dyes Pigm 77:7

    Article  CAS  Google Scholar 

  46. Önal HT, Yuzer A, Ince M, Ayaz F (2020) Photodiagn Photodyn Therapy 30:101707

    Article  Google Scholar 

  47. Baskaran R, Lee J, Yang S-G (2018) Biomat Res 22:25

    Article  Google Scholar 

  48. Zheng W, Wan C-Z, Zhang J-X, Li C-H, You X-Z (2015) Tetrahedron Lett 56:46358

    Google Scholar 

  49. Schmidt MS, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  50. Dykstra C, Frenking G, Kim K, Scuseria G (eds) (2005) Theory and applications of computational chemistry: the first forty years. Elsevier

Download references

Acknowledgements

Financial supports from the Slovak Ministry of Education, Science, Research and Sport under the contract no. VEGA 2/0055/21 and the Slovak Research and Development Agency APVV-17-0513 is gratefully acknowledged. The work was also financially supported by a grant of University of SS Cyril and Methodius with the project number UCM FPPV 22-2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Gašparová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gašparová, M., Kabaňová, N., Tokár, K. et al. Novel type of azomethine with combined effects of thiophene cores and vicinal cyano groups. Monatsh Chem 153, 1099–1105 (2022). https://doi.org/10.1007/s00706-022-02993-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02993-x

Keywords

Navigation