Skip to main content
Log in

Diels–Alder cycloaddition of the silicon–silicon bonds at pentagon junctions of Si-doped non-IPR and SW defective fullerenes

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

We study the Si doping of contiguous pentagons in the non-IPR C60(D3) and C70(C2v), and SW-defective IPR C60 fullerenes. At that point, Diels–Alder [4 + 2] cycloaddition between butadiene, as diene, and the dangling bonds of silicon dimers of contiguous pentagons in these Si-doped fullerenes, as dienophile, are investigated. The binding energies of 8.05–E8.65 eV/atom are obtained for Si-doping of pentagon–pentagon junctions in C60(D3), C70(C2v), and C60-SW fullerenes, whereupon the quasi-tetrahedral bonding configurations of silicon atoms dependent on sp3 hybridization are formed. Calculated NICS values show Si-doping of pentagon–pentagon junctions prompts strengthened induced diatropic ring currents in heterofullerenes, because of the safeguarding of the conjugated pattern of the hexagonal rings. The results also suggest the higher tendency of charged Si-doped non-IPR fullerenes C54Si66− and C64Si66− to cycloaddition. While the first [4 + 2] cycloaddition leads to an increase in the electrophilicity of the products, electrophilicity decreases with further cycloadditions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ganesamoorthy R, Sathiyan G, Sakthivel P (2017) Sol Energy Mater Sol Cells 161:102

    Article  CAS  Google Scholar 

  2. Coro J, Suárez M, Silva LSR, Eguiluz KIB, Salazar-Banda GR (2016) Int J Hydrogen Energy 41:17944

    Article  CAS  Google Scholar 

  3. Liu Q, Cui Q, Li XJ, Jin L (2014) Connect Tissue Res 55:71

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rašović I (2017) Mater Sci Technol 33:777

    Article  Google Scholar 

  5. Castro E, Garcia AH, Zavala G, Echegoyen L (2017) Mater J Chem B 5:6523

    Article  CAS  Google Scholar 

  6. Troshin PA, Lyubovskaya RN (2008) Russ Chem Rev 77:323

    Article  Google Scholar 

  7. Popov AA, Yang S, Dunsch L (2013) Chem Rev 113:5989

    Article  CAS  PubMed  Google Scholar 

  8. Averdung J, Torres-Garcia G, Luftmann H, Schlachter I, Mattay J (1996) Fullerene Sci Technol 4:633

    Article  CAS  Google Scholar 

  9. Vostrowsky O, Hirsch A (2006) Chem Rev 106:5191

    Article  CAS  PubMed  Google Scholar 

  10. Hummelen JC, Bellavia-Lund C, Wudl F (1999) Heterofullerenes. In: Hirsch A (ed) Fullerenes and related structures. Topics in current chemistry, vol 199. Springer, Berlin

    Google Scholar 

  11. Schultz D, Droppa R Jr, Alvarez F, dos Santos MC (2003) Phys Rev Lett 90:015501

    Article  CAS  PubMed  Google Scholar 

  12. Yong Y, Zhou Q, Li X, Lv S (2016) AIP Adv 6:075321

    Article  Google Scholar 

  13. Yong Y, Lv S, Zhang R, Zhou Q, Su X, Li T, Cui H (2016) RSC Adv 6:89080

    Article  CAS  Google Scholar 

  14. Barman S, Sen P, Das GP (2008) J Phys Chem C 112:19963

    Article  CAS  Google Scholar 

  15. Matsubara M, Massobrio C (2005) J Phys Chem A 109:4415

    Article  CAS  PubMed  Google Scholar 

  16. Matsubara M, Massobrio C (2005) J Chem Phys 122:084304

    Article  CAS  Google Scholar 

  17. Marcos PA, Alonso JA, López MJ (2007) J Chem Phys 126:044705

    Article  PubMed  Google Scholar 

  18. Anafcheh M, Ghafouri R (2014) J Clust Sci 25:505

    Article  CAS  Google Scholar 

  19. Pattanayak J, Kar T, Scheiner S (2002) J Phys Chem A 106:2970

    Article  CAS  Google Scholar 

  20. Kar T, Pattanayak J, Scheiner S (2003) J Phys Chem A 107:8630

    Article  CAS  Google Scholar 

  21. Jiao H, Chen Z, Hirsch A, Thiel W (2003) J Mol Model 9:34

    Article  CAS  PubMed  Google Scholar 

  22. Pattanayak J, Kar T, Scheiner S (2004) J Phys Chem A 108:7681

    Article  CAS  Google Scholar 

  23. Xu X, Shang Z, Wang G, Li R, Cai Z, Zhao X (2005) J Phys Chem A 109:3754

    Article  CAS  PubMed  Google Scholar 

  24. Huda MN, Ray AK (2008) Chem Phys Lett 457:124

    Article  CAS  Google Scholar 

  25. Anafcheh M, Khodadadi Z, Ektefa F, Ghafouri R (2016) J Phys Chem Solids 92:26

    Article  CAS  Google Scholar 

  26. Wang S, Yang S, Kemnitz E, Troyanov SI (2016) Chemistry 5:77

    Google Scholar 

  27. Cataldo F (1999) Fullerene Sci Techn 7:289

    Article  CAS  Google Scholar 

  28. Kobayashi K, Nagase S, Yoshida M, Ōsawa E (1997) J Am Chem Soc 119:12693

    Article  CAS  Google Scholar 

  29. Aihara J-I (1995) J Am Chem Soc 117:4130

    Article  CAS  Google Scholar 

  30. Schwerdtfeger P, Wirz LN, Avery J (2015) Comput Mol Sci 5:96

    Article  CAS  Google Scholar 

  31. Tan Y-Z, Li J, Zhu F, Han X, Jiang W-S, Huang R-B, Zheng Z, Qian Z-Z, Chen R-T, Liao Z-J, Xie S-Y, Lu X, Zheng L-S (2010) Nature Chem 2:269

    Article  CAS  Google Scholar 

  32. Sheka EF, Razbirin BS, Nelson DK (2011) J Phys Chem A 115:3480

    Article  CAS  PubMed  Google Scholar 

  33. Stone AJ, Wales DJ (1986) Chem Phys Lett 128:501

    Article  CAS  Google Scholar 

  34. Wang CR, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H (2000) Nature 408:426

    Article  CAS  PubMed  Google Scholar 

  35. Stevenson S, Fowler PW, Heine T, Duchamp JC, Rice G, Glass T, Harich K, Hajdu E, Bible R, Dorn HC (2000) Nature 408:427

    Article  CAS  PubMed  Google Scholar 

  36. Paquette LA, Ternansky RJ, Balogh DW (1982) J Am Chem Soc 104:4502

    Article  CAS  Google Scholar 

  37. Ternansky RJ, Balogh DW, Paquette LA (1982) J Am Chem Soc 104:4503

    Article  CAS  Google Scholar 

  38. Xie S-Y, Gao F, Lu X, Huang R-B, Wang C-R, Zhang X, Liu M-L, Deng S-L, Zheng L-S (2004) Science 304:699

    Article  CAS  PubMed  Google Scholar 

  39. Wang C-R, Shi Z-Q, Wan L-J, Lu X, Dunsch L, Shu C-Y, Tang Y-L, Shinohara H (2006) J Am Chem Soc 128:6605

    Article  CAS  PubMed  Google Scholar 

  40. Han X, Zhou S-J, Tan Y-Z, Wu X, Gao F, Liao Z-J, Huang R-B, Feng Y-Q, Lu X, Xie S-Y, Zheng L-S (2008) Angew Chem Int Ed 47:5340

    Article  CAS  Google Scholar 

  41. Tan Y-Z, Han X, Wu X, Meng Y-Y, Zhu F, Qian Z-Z, Liao Z-J, Chen M-H, Lu X, Xie S-Y, Huang R-B, Zheng L-S (2008) J Am Chem Soc 130:15240

    Article  CAS  PubMed  Google Scholar 

  42. Tan YZ, Liao ZJ, Qian ZZ, Chen RT, Wu X, Liang H, Han X, Zhu F, Zhou SJ, Zheng Z, Lu X, Xie SY, Huang RB, Zheng LS (2008) Nat Mater 7:790

    Article  CAS  PubMed  Google Scholar 

  43. Ioffe IN, Goryunkov AA, Tamm NB, Sidorov LN, Kemnitz E, Troyanov SI (2009) Angew Chem Int Ed 48:5904

    Article  CAS  Google Scholar 

  44. Kimura T, Sugai T, Shinohara H (1996) Chem Phys Lett 256:269

    Article  CAS  Google Scholar 

  45. Fye JL, Jarrold MF (1997) J Phys Chem A 101:1836

    Article  CAS  Google Scholar 

  46. Branz W, Billas IML, Malinowski N, Tast F, Heinebrodt M, Martin TP (1998) J Chem Phys 109:3425

    Article  CAS  Google Scholar 

  47. Billas IML, Tast F, Branz W, Malinowski N, Heinebrodt M, Martin TP, Boero M, Massobrio C (1999) Eur Phys J D 9:337

    Article  CAS  Google Scholar 

  48. Konecny R, Doren DJ (1997) J Am Chem Soc 119:11098

    Article  CAS  Google Scholar 

  49. Fowler PW, Manolopoulos DE (1995) An atlas of fullerenes. Clarendon Press, Oxford

    Google Scholar 

  50. Tan Y-Z, Xie S-Y, Huang R-B, Zheng L-S (2009) Nat Chem 1:540

    Article  Google Scholar 

  51. Zettergren H, Alcamí M, Martin F (2008) ChemPhysChem 9:861

    Article  CAS  PubMed  Google Scholar 

  52. Chang YF, Zhang JP, Sun H, Hong B, An Z, Wang RS (2005) Int J Quantum Chem 105:142

    Article  CAS  Google Scholar 

  53. Anafcheh M, Ghafouri R (2014) Struct Chem 25:617

    Article  CAS  Google Scholar 

  54. Neretin IS, Lyssenko KA, Antipin MY, Slovokhotov YL, Boltalina OV, Troshin PA, Lukonin AY, Sidorov LN, Taylor R (2000) Angew Chem Int Ed 39:3273

    Article  CAS  Google Scholar 

  55. Heine T, Schleyer PVR, Corminboeuf C, Seifert G, Reviakine R, Weber J (2003) J Phys Chem A 107:6470

    Article  CAS  Google Scholar 

  56. Birkett PR, Bühl M, Khong A, Saunders M, Taylor R (1999) J Chem Soc Perkin Trans 2:2037

    Article  Google Scholar 

  57. Sternfeld T, Rabinovitz M, Wudl F, Hummelen K, Weitz A, Haddon RC (1999) Chem Commun 1:2411

  58. Sun G, Kertesz M (2000) J Phys Chem A 104:7398

    Article  CAS  Google Scholar 

  59. Saunders M, Cross RJ, Jimenez-Vazuez HA, Schimshi R, Khong A (1996) Science 271:1693

    Article  CAS  Google Scholar 

  60. Straka M, Vaara J (2006) J Phys Chem A 110:12338

    Article  CAS  PubMed  Google Scholar 

  61. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Hommes NJRVE (1996) J Am Chem Soc 118:6317

    Article  CAS  PubMed  Google Scholar 

  62. Chen Z, King RB (2005) Chem Rev 105:3613

    Article  CAS  PubMed  Google Scholar 

  63. Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PVR (2005) Chem Rev 105:3842

    Article  CAS  PubMed  Google Scholar 

  64. Sun G, Kertesz M (2000) J Phys Chem A 31:7398

    Article  Google Scholar 

  65. Chen Z, Jiao H, Hirsch A, Thie W (2001) J Org Chem 66:3380

    Article  CAS  PubMed  Google Scholar 

  66. Buhl M (1998) Chem Eur J 4:734

    Article  CAS  Google Scholar 

  67. Popov AA, Dunsch L (2007) J Am Chem Soc 129:11835

    Article  CAS  PubMed  Google Scholar 

  68. Parr RG, Szentpály LV, Liu S (1999) J Am Chem Soc 121:1922

    Article  CAS  Google Scholar 

  69. Politzer P, Murry JS (2006) Chem Phys Lett 431:195

    Article  CAS  Google Scholar 

  70. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801

    Article  CAS  Google Scholar 

  71. Schwerdtfeger P, Wirz L, Avery J (2013) J Comput Chem 34:1508

    Article  CAS  PubMed  Google Scholar 

  72. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  73. Osuna S, Swart M, Solá M (2011) J Phys Chem A 115:3491

    Article  CAS  PubMed  Google Scholar 

  74. Zhang Y, Wu A, Xu X, Yan Y (2007) J Phys Chem A 111:9431

    Article  CAS  PubMed  Google Scholar 

  75. Hariharan PC, Pople JA (1974) Mol Phys 27:209

    Article  CAS  Google Scholar 

  76. Anafcheh M, Ghafouri R (2014) Phys E 56:351

    Article  CAS  Google Scholar 

  77. Anafcheh M, Ektefa F (2015) Struct Chem 26:1115

    Article  CAS  Google Scholar 

  78. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  79. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 4:1347

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge for the financial support from the Research Council of Alzahra University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Anafcheh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 148 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anafcheh, M., Khanmohammadi, H. & Zahedi, M. Diels–Alder cycloaddition of the silicon–silicon bonds at pentagon junctions of Si-doped non-IPR and SW defective fullerenes. Monatsh Chem 152, 241–250 (2021). https://doi.org/10.1007/s00706-021-02743-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02743-5

Keywords

Navigation