Skip to main content
Log in

New insight for the estimation of sulfur content from guanidinium tris(thiodipropionato)lanthanate(III) trihydrate: synthesis, thermal, and photoluminescent studies

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A new set of lighter lanthanide complexes having general formula (GunH)3[Ln(tdp)3]·3H2O (Ln = La, Pr, Nd, and Sm) derived from thiodipropionic acid (H2tdpa) and guanidine carbonate [Gun.(H2CO3)1/2] were synthesized by template method in aqueous medium. These complexes were characterized by various physico-chemical techniques, such as elemental analysis, molar conductance, FT-IR, UV–Vis, TG–DTA (air and nitrogen atmosphere), and PXRD studies. In this manuscript, for first time, the sulfur content of the acid in the complexes has been estimated by simple volumetric analysis. From the thermal analysis, all of the complexes are assisted with water molecules, which decompose endothermic followed by exothermic decomposition to yield Ln2(SO4)3 as the end residue. All the complexes are stabilized by nine coordinated monocapped square antiprismatic or tricapped trigonal prismatic geometry and found to be monomeric in compositions, which is proposed by various physico-chemical techniques. The isomorphism of these complexes is revealed by PXRD technique. Furthermore, the luminescence properties of free acid and the synthesized complexes were studied at room temperature in solid state.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maleh HK, Karimi F, Orooji Y, Mansouri G, Razmjou A, Aygun A, Sen F (2020) Sci Rep 10:11699

    Article  Google Scholar 

  2. Maleh HK, Kumar BG, Rajendran S, Qin J, Vadivel S, Durgalakshmi D, Gracia F, Moscoso MS, Orooji Y, Karimin F (2020) J Mol Liq 314:113588

    Article  Google Scholar 

  3. Maleh HK, Karimin F, Malekmohammadi S, Zakariae N, Esmaeili R, Rostamnia S, Yola ML, Movaghgharnezhad NAS, Rajendran S, Razmjou A, Orooji Y, Agarwal S, Kumargupta V (2020) J Mol Liq 310:113185

    Article  Google Scholar 

  4. Maleha HK, Cellat K, Arıkan K, Savk A, Karimi F, Şend F (2020) Mater Chem Phys 250:123042

    Article  Google Scholar 

  5. Kanchana P, Packiaraj S, Pushpaveni A, Govindarajan S (2017) J Therm Anal Calorim 129:3

    Article  CAS  Google Scholar 

  6. Packiaraj S, Govindarajan S (2014) Open J Inorg Chem 4:41

    Article  Google Scholar 

  7. Packiaraj S, Kanchana P, Pushpaveni A, Puschmann H, Govindarajan S (2019) New J Chem 43:979

    Article  CAS  Google Scholar 

  8. Garg AK, Madhavan A (2006) Synth React Inorg Met Org Chem 13:459

    Article  Google Scholar 

  9. Radhakrishnan PS, Indrasenan P (1989) Indian J Chem 28A:234

    CAS  Google Scholar 

  10. Swamy SJ, Kumar BK (1995) Indian J Chem 34A:235

    CAS  Google Scholar 

  11. Kuppusamy K, Govindarajan S (1996) Thermochim Acta 279:143

    Article  CAS  Google Scholar 

  12. Patil KC, Rattan TM (2014) Inorganic hydrazine derivatives - synthesis, properties and applications. Germany, John Wiley & Sons

  13. Tamilselvan K (2016) Metal hydrazine cinnamates: synthesis and characterization. Bedey Media GmbH, Anchor Academic Publishing Ltd

  14. Govindarajan S, Patil KC, Manohar H, Werner PE (1986) J Chem Soc Dalton Trans 1:119

  15. Raju B, Sivasankar BN (2008) J Therm Anal Calorim 94:289

    Article  CAS  Google Scholar 

  16. Premkumar T, Govindarajan S, Rath NP, Manivannan V (2009) Inorg Chim Acta 362:2941

    Article  CAS  Google Scholar 

  17. Devipriya S, Arunadevi N, Vairam S (2013) J Chem. https://doi.org/10.1155/2013/497956

  18. Almeida LD, Grandjean S, Rivenet M, Patisson F, Abraham F (2014) Dalton Trans 43:4680

    Article  Google Scholar 

  19. Karraker DG (1969) J Inorg Nucl Chem 31:2815

    Article  CAS  Google Scholar 

  20. Hu DX, Luo F, Che YX, Zheng J-M (2007) Cryst Growth Des 7:1733

    Article  CAS  Google Scholar 

  21. Liu MS, Yu QY, Cai YP, Su CY, Lin XM, Zhou XX, Cai J-W (2008) Cryst Growth Des 8:4083

    Article  CAS  Google Scholar 

  22. Lin XM, Zhou XX, Fang HC, Zeng RH, Xiao X, Cai YP (2009) J Coord Chem 62:2796

    Article  CAS  Google Scholar 

  23. Zhang T, Fang Li R, Feng X, Ng SW, Bai RF (2016) Inorg Nanometal Chem 47:375

    Google Scholar 

  24. Zarb LV, Baisch U (2017) Z Anorg Allg Chem 643:1712

    Article  Google Scholar 

  25. Tiwari SK, Prakash R, Rathore DPS (1978) J Indian Chem Soc 55:537

  26. Barrie S, William J, McWhinnie R (1981) Transit Met Chem 6:151

    Article  Google Scholar 

  27. Yang PP, Li B, Wang YH, Gu W, Liu X (2008) Z Anorg Allg Chem 634:1221

    Article  CAS  Google Scholar 

  28. Chandra S, Sharma AK (2009) Res Lett Inorg Chem. https://doi.org/10.1155/2009/945670

  29. Jeffery GH, Bassett J, Mendham J, Denney RC (1986) Vogel’s textbook of quantitative chemical analysis, 5th edn. Longman Scientific & Technical, London, Copublished with John Wiley & Sons, Inc., New York

  30. Packiaraj S, Pushpaveni A, Senthil C, Govindarajan S, Rawson J-M (2015) J Therm Anal Calorim 119:15

    Article  CAS  Google Scholar 

  31. Packiaraj S, Pushpaveni A, Govindarajan S, Rawson J-M (2016) Cryst Eng Comm 18:7978

    Article  CAS  Google Scholar 

  32. Pushpaveni A, Packiaraj S, Govindarajan S, McCandless GT, Fronczek CF, Fronczek FR (2018) Inorg Chim Acta 471:537

    Article  CAS  Google Scholar 

  33. Packiaraj S, Jeyaraj M, Chandarasekaran K, Rawson JM, Govindarajan S (2019) J Mater Sci Mater Electron 30:18866

    Article  CAS  Google Scholar 

  34. Sinha SP (1966) Spectrochim Acta A 22:57

    Article  CAS  Google Scholar 

  35. Feng X, Feng Y, Guo N, Sun Y, Zhang T, Ma L, Wang L (2017) Inorg Chem 56:1713

    Article  CAS  Google Scholar 

  36. Zhang T, Zhu X, Cheng CCW, Kwok WM, Tam HL, Hao J, Kwong DWJ, Wong WK, Wong KL (2011) J Am Chem Soc 133:20120

    Article  CAS  Google Scholar 

  37. Hasegawa M, Ohtsu H, Kodama D, Kasai T, Sakurai S, Ishii A, Suzukic K (2014) New J Chem 38:1225

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. P. wishes to thank URF for the award of a research fellowship in science for meritorious students under the University Research Fellowship. The author S. G. thanks the UGC-SAP-DRS II, New Delhi (India), for financial support. S. G. is also thankful for the award of UGC-Emeritus Fellowship by UGC, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Govindarajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 275 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Packiaraj, S., Kousalya, L., Poornima, S. et al. New insight for the estimation of sulfur content from guanidinium tris(thiodipropionato)lanthanate(III) trihydrate: synthesis, thermal, and photoluminescent studies. Monatsh Chem 152, 263–273 (2021). https://doi.org/10.1007/s00706-020-02729-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02729-9

Keywords

Navigation