Skip to main content

Advertisement

Log in

Electrochemical evaluation of synthesized s-triazine derivatives for improving 316L stainless steel for biomedical applications

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

316L stainless steel (316L SS) alloy has been broadly used for the fabrication of dental, orthopedic, and cardiovascular implants. As the surface of the stainless steel suffers from corrosion in the human body’s environment, a surface modification is required. Self-assembled monolayers (SAMs) perform a simple and efficient method for carrying out surface adaptation of the metallic biomaterials. In this study, synthesized s-triazine dicarboxylic acid derivative and four different s-triazine tetracarboxylic acid derivatives were considered to form SAMs on the 316L SS surface. The formed SAMs were electrochemically evaluated, as corrosion inhibitors for 316L SS in simulated body fluid (SBF) at 37 °C by means of potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS). The results revealed that all the studied compounds exhibit good corrosion inhibition and function as mixed-type inhibitors with anodic predominance. The inhibition efficiencies were increased with increasing the concentrations of the solution of s-triazine derivatives, except in case of one compound. The maximum inhibition efficiency (≈ 90%) was obtained for the most efficient compound at 700 ppm. The inhibition was assumed to occur via adsorption on the metal surface. The hydrophobicity of the modified surface was tested by contact angle measurements. The thermodynamic calculations suggested that the adsorption of these compounds on the metal surface is a spontaneous process obeying Langmuir adsorption isotherm.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li Y, Yang C, Zhao H, Qu S, Li X, Li Y (2014) Materials 7:1709

    PubMed  PubMed Central  Google Scholar 

  2. Narayan RJ (2010) Trans R Soc A 368:1831

    Google Scholar 

  3. Mahapatro A, Matos Negron TD, Gomes AS (2016) Mater Tech 31:818

    CAS  Google Scholar 

  4. Li L, Zhang M, Li Y, Zhao J, Qin L, Lai Y (2017) Regen Biomater 4:129

    CAS  Google Scholar 

  5. Waizy H, Seitz JM, Reifenrath J, Weizbauer A, Bach FW, Meyer-Lindenberg A, Denkena B, Windhagen H (2013) J Mater Sci 48:39

    CAS  Google Scholar 

  6. Bose S, Robertson SF, Bandyopadhyay A (2018) Acta Biomater 66:6

    CAS  PubMed  Google Scholar 

  7. Prasad K, Bazaka O, Chua M, Rochford M, Fedrick L, Spoor J, Symes R, Tieppo M, Collins C, Cao A, Markwell D, Ostrikov KK, Bazaka K (2017) Materials 10:884

    PubMed Central  Google Scholar 

  8. Oravcová M, Palček P, Zatkalíková V, Tański T, Król M (2017) IOP Conf Ser Mater Sci Eng 175:012009

    Google Scholar 

  9. Dziuba D, Meyer-Lindenberg A, Seitz JM, Waizy H, Angrisani N, Reifenrath J (2013) Acta Biomater 9:8548

    CAS  PubMed  Google Scholar 

  10. Hussein MA, Mohammed A, Al-Aqeeli N (2015) Materials 8:2749

    CAS  PubMed Central  Google Scholar 

  11. Vieira AC, Ribeiro AR, Rocha LA, Celis JP (2006) Wear 261:994

    CAS  Google Scholar 

  12. Asri RIM, Harun WSW, Samykano M, Lah NAC, Ghani SAC, Tarlochan F, Raza MR (2017) Mater Sci Eng C 77:1261

    CAS  Google Scholar 

  13. JohnMary S, Eureka M, Kathiravan P (2018) Int J Eng Sci Invent 7:70

    Google Scholar 

  14. Umoren SA (2016) J Adhes Sci Technol 30:1858

    CAS  Google Scholar 

  15. Hassan N, Abdel Ghany NA (2017) Corros Eng Sci Technol 52:267

    CAS  Google Scholar 

  16. ur Rahman Z, Deen KM, Cano L, Haider W (2017) Appl Surf Sci 410:432

    CAS  Google Scholar 

  17. Talha M, Behera CK, Sinha OP (2013) Mater Sci Eng C 33:3563

    CAS  Google Scholar 

  18. Stockmann-Juvala H, Hedberg Y, Dhinsa NK, Griffiths DR, Brooks PN, Zitting A, Odnevall Wallinder I, Santonen T (2013) Hum Exp Toxicol 32:1137

    CAS  PubMed  Google Scholar 

  19. Qiang Y, Zhang S, Yan S, Zou X, Chen S (2017) Corros Sci 126:295

    CAS  Google Scholar 

  20. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Chem Rev 105:1103

    CAS  PubMed  Google Scholar 

  21. Vericat C, Vela ME, Benitez G, Carro P, Salvarezza RC (2010) Chem Soc Rev 39:1805

    CAS  PubMed  Google Scholar 

  22. Srisombat L, Jamison AC, Lee TR (2011) Colloids Surf Physicochem Eng Aspects 390:1

    CAS  Google Scholar 

  23. Schreiber F (2000) Prog Surf Sci 65:151

    CAS  Google Scholar 

  24. Keshavarz MH, Esmaeilpour K, Golikand AN, Shirazi Z (2016) Z Anorg Allg Chem 642:906

    CAS  Google Scholar 

  25. Verma C, Olasunkanmi LO, Ebenso EE, Quraishi MA (2018) J Mol Liq 251:100

    CAS  Google Scholar 

  26. El-Faham A, Dahlous K, Al Othman Z, Al-Lohedan H, El-Mahdy G (2016) Molecules 21:436

    PubMed  PubMed Central  Google Scholar 

  27. Yoo SH, Kim YW, Chung K, Kim NK, Kim JS (2013) Ind Eng Chem Res 52:10880

    CAS  Google Scholar 

  28. Karthik R, Muthukrishnan P, Elangovan A, Srividhya MM, Jeyaprabha B, Prakash P (2015) Prot Met Phys Chem Surf 51:667

    CAS  Google Scholar 

  29. Melato S, Prosperi D, Coghi P, Basilico N, Monti DA (2008) Chem Med Chem 3:873

    CAS  PubMed  Google Scholar 

  30. Xiong YZ, Chen FE, Balzarini J, De Clercq E (2008) Eur J Med Chem 43:1230

    CAS  PubMed  Google Scholar 

  31. Zhou C, Min J, Liu Z, Young A, Deshazer H, Gao T, Chang YT, Kallenbach R (2008) Med Chem Lett 18:1308

    CAS  Google Scholar 

  32. Saleh M, Abbott S, Perron V, Lauzon C, Penney C, Zacharie B (2010) Bioorg Med Chem Lett 20:945

    CAS  PubMed  Google Scholar 

  33. Rao YK, Fang SH, Tzeng YM (2004) Bioorg Med Chem 12:2679

    CAS  PubMed  Google Scholar 

  34. Svetaz L, Tapia A, Lopez SN, Furlan RLE, Petenatti E, Pioli R, Schmeda- Hirschmann G, Zacchino SA (2004) J Agric Food Chem 52:3297

    CAS  PubMed  Google Scholar 

  35. Nowakowska Z (2007) Eur J Med Chem 42:125

    CAS  PubMed  Google Scholar 

  36. Khattab SN, Khalil HH, Bekhit AA, Abd El-Rahman MM, de la Torre BG, El-Faham A, Albericio F (2018) ChemMedChem 13:725

    CAS  PubMed  Google Scholar 

  37. Khattab S, Khalil H, Bekhit A, Abd El-Rahman M, El-Faham A, Albericio F (2015) Molecules 20:15976

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Khattab SN, Naim SEA, El-Sayed M, El Bardan AA, Elzoghby AO, Bekhit AA, El-Faham A (2016) New J Chem 40:9565

    CAS  Google Scholar 

  39. Gavade SN, Markad VL, Kodam KM, Shingare MS, Mane DV (2012) Bioorg MedChem Lett 22:5075

    CAS  Google Scholar 

  40. Courme C, Gresh N, Vidal M, Lenoir C, Garbay C, Florent JC, Bertounesque E (2010) Eur J Med Chem 45:244

    CAS  PubMed  Google Scholar 

  41. Gahtori P, Ghosh SK, Sing B, Singh UP, Bhat HR (2012) Saudi Pharm J 20:35

    PubMed  Google Scholar 

  42. Desai NC, Makwana AH, Rajpara KM (2016) J Saudi Chem Soc 20:S334

    CAS  Google Scholar 

  43. Ramadan DR, Elbardan AA, Bekhit AA, El-Faham A, Khattab SN (2018) New J Chem 42:10676

    CAS  Google Scholar 

  44. Al-Zaydi KM, Khalil HH, El-Faham A, Khattab SN (2017) Chem Cent J 11:39

    PubMed  PubMed Central  Google Scholar 

  45. Haiba NS, Khalil HH, Abdel Moniem M, El-Wakil MH, Bekhit AA, Khattab SN (2019) Bioorg Chem 89:103013

    CAS  PubMed  Google Scholar 

  46. Verma C, Quraishi MA, Kluza K, Makowska-Janusik M, Olasunkanmi LO, Ebenso EE (2017) Sci Rep 7:44432

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hassan N, Ali SM, Ebrahim A, El-Adawi H (2019) Mater Res Express 6:0865c7

    Google Scholar 

  48. Ituen E, Akaranta O, James A, Sun S (2017) Sustain Mater Technol 11:12

    CAS  Google Scholar 

  49. Gadow HS, Motawea MM (2017) RSC Adv 7:24576

    CAS  Google Scholar 

  50. Peme T, Olasunkanmi LO, Bahadur I, Adekunle A, Kabanda MM, Ebenso E (2015) Molecules 20:16004

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ituen EB, Akaranta O, Umoren SA (2017) J Mol Liq 246:112

    CAS  Google Scholar 

  52. Wang X, Yang H, Wang F (2011) Corros Sci 53:113

    CAS  Google Scholar 

  53. Mobin M, Rizvi M, Olasunkanmi LO, Ebenso EE (2017) ACS Omega 2:3997

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang X, Wang B, Zhang L, Yang C, Yang Y (2017) Metals 7:532

    Google Scholar 

  55. de Sousa JR, Parente MM, Diógenes ICN, Lopes LGF, de Lima Neto P, Temperini MLA, Batista AA, de Sousa Moreira Í (2004) J Electroanal Chem 566:443

    Google Scholar 

  56. Ding SJ, Chang BW, Wu CC, Lai MF, Chang HC (2005) Anal Chim Acta 554:43

    CAS  Google Scholar 

  57. Liang C, Wang P, Wu B, Huang N (2010) J Solid State Electrochem 14:1391

    CAS  Google Scholar 

  58. Feng L, Zhang S, Qiang Y, Xu Y, Guo L, Madkour LH, Chen S (2018) Materials 11:1042

    PubMed Central  Google Scholar 

  59. Zhou Y, Xu S, Guo L, Zhang S, Lu H, Gong Y, Gao F (2015) RSC Adv 5:14804

    CAS  Google Scholar 

  60. Yoo SH, Kim YW, Shin J, Kim NK, Kim JS (2015) Bull Korean Chem Soc 36:346

    CAS  Google Scholar 

  61. Dutta A, Panja SS, Nandi MM, Sukul D (2015) J Chem Sci 127:921

    CAS  Google Scholar 

  62. Finšgar M, Jackson J (2014) Corros Sci 86:17

    Google Scholar 

  63. Braun RD, Lopez EE, Vollmer DP (1993) Corros Sci 34:1251

    CAS  Google Scholar 

  64. Zhugayevych A, Postupna O, Wang HL, Tretiak S (2016) Chem Phys 481:133

    CAS  Google Scholar 

  65. Park YI, Kuo CY, Martinez JS, Park YS, Postupna O, Zhugayevych A, Kim S, Park J, Tretiak S, Wang HL (2013) ACS Appl Mater Interfaces 5:4685

    CAS  PubMed  Google Scholar 

  66. Bansal KK, Kakde D, Gupta U, Jain NK (2010) J Nanosci Nanotechnol 10:8395

    CAS  PubMed  Google Scholar 

  67. Jindal S, Anand S, Kang Huang K, Goddard J, Metzger L, Amamcharla J (2016) J Dairy Sci 99:9502

    CAS  PubMed  Google Scholar 

  68. Noor EA, Al-Moubaraki AH (2008) Mater Chem Phys 110:145

    CAS  Google Scholar 

  69. Morales-Gil P, Negrón-Silva G, Romero-Romo M, Ángeles-Chávez C, Palomar-Pardavé M (2004) Electrochim Acta 49:4733

    CAS  Google Scholar 

  70. Negm NA, Elkholy YM, Zahran MK, Tawfik SM (2010) Corros Sci 52:3523

    CAS  Google Scholar 

  71. Umoren SA, Ebenso EE (2007) Mater Chem Phys 106:387

    CAS  Google Scholar 

  72. Özcan M, Solmaz R, Kardaş G, Dehri İ (2008) Colloids Surf A Physicochem Eng Asp 325:57

    Google Scholar 

  73. Saha SK, Dutta A, Ghosh P, Sukul D, Banerjee P (2015) Phys Chem Chem Phys 17:5679

    CAS  PubMed  Google Scholar 

  74. John S, Joseph A (2012) RSC Adv 2:9944

    CAS  Google Scholar 

  75. Hassan N, Holze R (2009) J Chem Sci 121:693

    CAS  Google Scholar 

  76. Al-Amiery A, Kadhum A, Kadihum A, Mohamad A, How C, Junaedi S (2014) Materials 7:787

    PubMed  PubMed Central  Google Scholar 

  77. Madkour LH, Elroby SK (2015) Int J Ind Chem 6:165

    CAS  Google Scholar 

  78. Chauhan LR, Gunasekaran G (2007) Corros Sci 49:1143

    CAS  Google Scholar 

  79. Chakravarthy MP, Mohana KN, Kumar CBP (2014) Int J Ind Chem 5:19

    Google Scholar 

  80. Kokubo T, Takadama H (2006) Biomaterials 27:2907

    CAS  Google Scholar 

Download references

Acknowledgements

First, the authors thank Alexandria University-Research Enhancement Program (ALEXREP) for funding the organic synthesis and characterization through the Research Project (HLTH-13, BASC-13). Second, the authors greatly appreciate the funding of City of Scientific Research and Technological Applications (SRTA, City) where the electrochemical measurements and calculations were done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazly Hassan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, N., Ramadan, D.R., Elbardan, A.A. et al. Electrochemical evaluation of synthesized s-triazine derivatives for improving 316L stainless steel for biomedical applications. Monatsh Chem 150, 1761–1771 (2019). https://doi.org/10.1007/s00706-019-02499-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-02499-z

Keywords

Navigation