Skip to main content
Log in

Structure–extractability relationships for substituted 8-hydroxyquinolines: solvent extraction of indium ions from acidic aqueous media

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The purpose of our investigation was the evaluation of the potential of selected 8-hydroxyquinoline derivatives, bearing alkanoyl or alkyl groups of different chain lengths, to extract indium ions in the presence of other metal ions, such as Fe(III) and Zn(II), from acidic aqueous media. Studies on extraction of indium ions by the tested compounds allowed the identification of interesting structure–activity relationships and showed that compounds bearing a 5-alkanoyl group are more effective indium extractors than the 5-alkyl-, 7-alkanoyl-, and 7-alkyl-bearing analogs under the chosen extraction conditions. Compound bearing the n-nonanoyl group at 5-position was proven to be a particularly powerful extractor for indium ions, showing not only the best selectivity for indium over iron and zinc ions, but also the most favorable extraction kinetics. Furthermore, the extracted indium ions can be re-extracted from organic into aqueous phase with good yields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Phillips JP (1956) Chem Rev 56:271

    Article  CAS  Google Scholar 

  2. Starý J (1964) The solvent extraction of metal chelates. Pergamon Press, New York, p 80

    Google Scholar 

  3. Hollingsheard RGW (1956) Oxine and its derivatives. Butterworths, London

    Google Scholar 

  4. Marcus Y, Kertes AS (1969) Ion exchange and solvent extraction of metal complexes. John Wiley & Sons, New York

    Google Scholar 

  5. De AK, Khopkar SM, Chalmers RA (1970) Solvent extraction of metals. Van Nostard Reinhold Co, New York, p 76

    Google Scholar 

  6. Zborowski KK, Solá M, Poater J, Proniewicz LM (2013) Cent Eur J Chem 11:655

    CAS  Google Scholar 

  7. Moeller T, Cohen AJ (1950) Anal Chem 22:686

    Article  CAS  Google Scholar 

  8. Feng L, Wang X, Chen Z (2008) Spectrochim Acta Part A 71:312

    Article  CAS  Google Scholar 

  9. Feng L, Wang X, Zhao S, Chen Z (2007) Spectrochim Acta Part A 68:646

    Article  CAS  Google Scholar 

  10. Matsumura M, Akai T (1996) Jpn Appl Phys 35:5357

    Article  CAS  Google Scholar 

  11. Montes VA, Pohl R, Shinar J, Anzenbacher P Jr (2006) Chem Eur J 12:4523

    Article  CAS  PubMed  Google Scholar 

  12. Geffert C, Mazik M (2013) J Org Chem 78:292

    Article  CAS  PubMed  Google Scholar 

  13. Mazik M, Geffert C (2011) Org Biomol Chem 9:2319

    Article  CAS  PubMed  Google Scholar 

  14. Albrecht M, Fiege M, Osetska O (2008) Coord Rev 252:812

    Article  CAS  Google Scholar 

  15. Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V (2013) Drug Des Dev Ther 7:1157

    Article  Google Scholar 

  16. Song Y, Xu H, Chen W, Zhan P, Liu X (2015) Med Chem Commun 6:61

    Article  CAS  Google Scholar 

  17. Cherdtrakulkiat R (2016) Biochem Biophys Rep 6:135

    PubMed  PubMed Central  Google Scholar 

  18. Chan SH, Chui CH, Chan SW, Kok SHL, Chan D, Tsoi MYT, Leung PHM, Lam AKY, Chan ASC, Lam KH, Tang JCO (2013) ACS Med Chem Lett 4:170

    Article  CAS  PubMed  Google Scholar 

  19. Shen AY, Wu SN, Chiu CT (1999) J Pharm Pharmacol 51:543

    Article  CAS  PubMed  Google Scholar 

  20. Uhlemann E, Schilde U (1985) Z Anorg Allg Chem 524:193

    Article  CAS  Google Scholar 

  21. Uhlemann E, Mickler W (1981) Anal Chim Acta 130:177

    Article  CAS  Google Scholar 

  22. Uhlemann E, Opitz B, Schilde U (1985) Z Anorg Allg Chem 520:167

    Article  CAS  Google Scholar 

  23. Uhlemann E, Weber W, Fischer C, Raab M (1984) Anal Chim Acta 156:201

    Article  CAS  Google Scholar 

  24. Filik H, Apak R (1994) Sep Sci Technol 29:2047

    Article  CAS  Google Scholar 

  25. Friedrich A, Bukowsky H, Uhlemann E, Gloe K, Mühl P (1987) Anal Chim Acta 193:373

    Article  CAS  Google Scholar 

  26. Yamada H, Hayashi H, Yasui T (2006) Anal Sci 22:371

    Article  CAS  PubMed  Google Scholar 

  27. Gloe K, Stephan H, Krüger T, Möckel A, Woller N, Subklew G, Schwuger MJ, Neumann R, Weber E (1996) Progr Colloid Polym Sci 101:145

    Article  CAS  Google Scholar 

  28. Neumann R, Weber E, Möckel A, Subklew G (1998) J Prakt Chem 340:613

    Article  CAS  Google Scholar 

  29. Hansford GS, Vargas T (2001) Hydrometallurgy 59:135

    Article  CAS  Google Scholar 

  30. Ehrlich HL (2011) Hydrometallurgy 59:127

    Article  Google Scholar 

  31. Santos SMC, Machado RM, Correia MJN, Reis MTA, Ismael MRC, Carvalho JMR (2010) Miner Eng 23:606

    Article  CAS  Google Scholar 

  32. Werner A, Meschke K, Bohlke K, Daus B, Haseneder R, Repke JU (2018) ChemBioEng Rev 5:6

    Article  CAS  Google Scholar 

  33. Hedrich S, Schippers A (2017) Chem Ing Tech 89:29

    Article  CAS  Google Scholar 

  34. Jha MK, Kumari A, Panda R, Kumar JR, Yoo K, Lee JY (2016) Hydrometallurgy 165:2

    Article  CAS  Google Scholar 

  35. Melcher F, Wilken H (2013) Chem unserer Zeit 47:32

    Article  Google Scholar 

  36. Massari S, Ruberti M (2013) Resour Policy 38:36

    Article  Google Scholar 

  37. White SJO, Hemond HF (2012) Crit Rev Environ Sci Technol 42:155

    Article  CAS  Google Scholar 

  38. Wood SA, Samson IM (2006) Ore Geol Rev 28:57

    Article  Google Scholar 

  39. Paivaa P (2001) Sep Sci Technol 36:1395

    Article  Google Scholar 

  40. Pradhana D, Pandab S, Lala Behari Sukla LB (2018) Miner Process Extr Metall Rev 39:167

    Article  Google Scholar 

  41. Dryssen D (1956) Svensk Kem Tidskr 68:212

    CAS  Google Scholar 

  42. Irving H, Rossotti HS (1954) J Chem Soc 0:2910

  43. Irving H, Ewart JAD, Wilson JT (1949) J Chem Soc 0:2672

  44. Philips JP (1952) J Am Chem Soc 74:552

    Article  Google Scholar 

  45. Chemical Abstracts Service, Columbus, OH; calculated using ACD/Labs software, version 11.02; ACD/Labs 1994–2019. https://scifinder.cas.org. Accessed 2 Jan 2019

  46. Pérez-Bolívar C, Montes VA, Anzenbacher P Jr (2006) Inorg Chem 45:9610

    Article  CAS  PubMed  Google Scholar 

  47. Bardez E, Devol I, Larrey B, Valeur B (1997) J Phys Chem B 101:7786

    Article  CAS  Google Scholar 

  48. Uhlemann E, Mickler W, Ludwig E, Klose G (1981) J Prakt Chem 323:521

    Article  CAS  Google Scholar 

  49. Uhlemann E, Weber W (1983) Z Chem 23:33

    Google Scholar 

  50. Stephan H, Gloe K, Krüger T, Chartroux C, Neumann R, Weber E, Möckel A, Woller N, Subklew G, Schwuger MJ (1996) Solvent Extr Res Dev Jpn 3:4351

    Google Scholar 

  51. Koide Y, Hokonohara H, Jinnai K, Yamada K (1987) Bull Chem Soc Jpn 60:2327

    Article  CAS  Google Scholar 

  52. Manthou VS, Perganti D, Rotas G, Falaras P, Vougioukalakis G (2017) Synlett 28:929

    Article  CAS  Google Scholar 

  53. Vostal R, Šingliar U, Fröhlich P (2017) Chem Ing Tech 89:135

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Dr. Erich Krüger Foundation at the Technische Universität Bergakademie Freiberg for supporting the Biohydrometallurgical Center for Strategic Elements (BHMZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Mazik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2841 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulze, M.M., Löwe, R., Pollex, R. et al. Structure–extractability relationships for substituted 8-hydroxyquinolines: solvent extraction of indium ions from acidic aqueous media. Monatsh Chem 150, 983–990 (2019). https://doi.org/10.1007/s00706-019-02387-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-02387-6

Keywords

Navigation