Skip to main content
Log in

One-pot synthesis of nitrones from nitro compounds by in situ trapping of arylhydroxylamines

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Highly efficient, convenient, simple procedure and a highly chemoselective method has been described for the conversion of nitroarenes to their corresponding nitrone derivatives by employing SnCl2·2H2O and Na2CO3 in the grinding apparatus in solvent-free conditions. Biaryl nitrones can be achieved via the condensation of an aldehyde with an unstable arylhydroxylamine which is prepared in situ through the reduction of the corresponding nitro aromatic compound. Interestingly, the slow and nonselective reduction of nitroarene to arylhydroxylamine step was directed with the condensation of in situ-prepared arylhydroxylamine with aromatic aldehyde (second step). Moreover, this protocol was successfully used for preparation of valuable dinitrones from dialdehyde and nitro aromatic compounds. For dinitrone preparation, dialdehyde compounds were first synthesized by the reaction of salicylaldehyde and glycol derivatives. Then, dialdehydes were reacted with reduced nitro compounds in optimal conditions that we used for synthesis of biaryl nitrones.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cardona F, Bonanni M, Soldaini G, Goti A (2008) ChemSusChem 1:327

    Article  CAS  Google Scholar 

  2. Sarlo FD, Brandi A, Mascagni P (1981) Synthesis:561

  3. Toshiya S, Masatomo N, Shigekazu K (1990) J Org Chem 55:4221

    Article  Google Scholar 

  4. Srivastava RS, Nicholas KM (1997) J Am Chem Soc 119:3302

    Article  CAS  Google Scholar 

  5. Ming HC, Chu LT (2000) New J Chem 24:859

    Article  Google Scholar 

  6. Lin LJ, Sheng HJ, Yuan ZZ, Kai CK, Ming CC (2001) Chem Eur J 11:2306

    Google Scholar 

  7. Hiroshi T, Ichi TJ, Suguru H, Keisuke T, Yoshinori O (2003) Eur J Org Chem:3920

  8. Neri G, Rizzo G, Milone C, Spence JD, Raymond AE, Norton DE (2003) Tetrahedron Lett 44:849

    Article  Google Scholar 

  9. Li T, Yan XG, Yong Y, Zu LL (2003) Synthesis:1329

  10. Li F, Cui J, Qian X, Zhang R (2004) Chem Commun:2338

  11. Kamm O (1925) Org Synth 4:57

    Article  Google Scholar 

  12. Taya K (1966) Chem Commun (London):464

  13. Entwistle ID, Gilkerson T (1978) Tetrahedron 34:213

    Article  CAS  Google Scholar 

  14. Ayyangar NR, Brahme KC, Kalkote UR, Srinivasan KY (1984) Synthesis:938

  15. Yanada K, Yamaguchi H, Meguri H, Uchida S (1986) J Chem Soc Chem Commun:1655

  16. Downey CW, Maxwell EN, Confair DN (2014) Tetrahedron Lett 55:4959

    Article  CAS  Google Scholar 

  17. Mirza-Aghayan M, Tavana MM, Boukherroub R (2014) Tetrahedron Lett 55:5471

    Article  CAS  Google Scholar 

  18. Campbell HF, Santora NF, Douglas GH (1980) Anti-inflammatory compositions containing α-phenyl-N-phenylnitrone compounds (US patent 4,224,340, 23 Sep 1980). Chem Abstr 91:96632

  19. Arumugan N, Manisankar P, Sivasubramanian S (1984) Org Magn Reson 22:592

  20. Griffing BF, West PR (1989) Diarylnitrones (US patent 4,859,789, 22 Aug 22 1989). Chem Abstr 109:139166

  21. De P (2004) Synlett 1835

  22. Yu C, Liu B, Hu L (2001) J Org Chem 61:919

    Article  Google Scholar 

  23. Shi QX, Lu RW, Jin K, Zhang ZX, Zhao DF (2006) Chem Lett 35:226

    Article  CAS  Google Scholar 

  24. Atamna H, Paler-Martınez A, Ames BN (2000) J Biol Chem 275:6741

    Article  CAS  Google Scholar 

  25. Hamer J, Macaluso A (1964) Chem Rev 64:473

    Article  CAS  Google Scholar 

  26. Huisgen R (1963) Angew Chem Int Ed 2:565

    Article  Google Scholar 

  27. Black D, Crozier RF, Davis VC (1975) Synthesis:205

  28. Tufariello JJ (1979) Acc Chem Res 12:396

    Article  CAS  Google Scholar 

  29. Henry F (2008) Nitrile oxide, nitrone, and nitronates in organic synthesis: novel strategies in synthesis, 2nd edn. Wiley, New Jersey

    Google Scholar 

  30. Chang Z-Y, Coates RM (1990) J Org Chem 55:3475

    Article  CAS  Google Scholar 

  31. Enders D, Reinhold U (1997) Tetrahedron Asymmetry 8:1895

    Article  CAS  Google Scholar 

  32. Bloch R (1998) Chem Rev 98:1407

    Article  CAS  Google Scholar 

  33. Janzen EG, Hinton RD (1992) J Org Chem 57:2646

    Article  Google Scholar 

  34. Tice CM, Ganem BJ (1983) J Org Chem 48:5048

    Article  CAS  Google Scholar 

  35. Bigdeli MA, Nikje MMA (2001) Monatsh Chem 132:1547

    Article  CAS  Google Scholar 

  36. Nikje MMA, Bigdeli MA, Imanieh H (2004) Phosphorus. Sulfur Silicon Relat Elem 179:1465

    Article  CAS  Google Scholar 

  37. Chan KS, Yeung WK, Chan RJ, Wang TC, Mak W (1995) J Org Chem 60:1741

    Article  CAS  Google Scholar 

  38. Valizadeh H, Dinparast L (2009) Heteroat Chem 20:177

    Article  CAS  Google Scholar 

  39. Mitsui H, Zenki S, Shiota T, Murahashi SIJ (1984) J Chem Soc Chem Commun:874

  40. Murahashi SI, Mitsui H, Shiota T, Tsuda T, Watanabe SJ (1990) Org Chem 55:1736

    Article  CAS  Google Scholar 

  41. Murahashi SI, Shiota T, Imada Y (1991) Org Synth 70:265

    Google Scholar 

  42. Yamazaki S (1997) Bull Chem Soc Jpn 70:877

    Article  CAS  Google Scholar 

  43. Zajac JWW, Walters TR, Darcy MG (1988) J Org Chem 53:5856

    Article  CAS  Google Scholar 

  44. Murray RW, Singh MJ (1990) Org Chem 55:2954

    Article  CAS  Google Scholar 

  45. Cicchi S, Corsi M, Goti A (1999) J Org Chem 64:7243

    Article  CAS  Google Scholar 

  46. Vallee Y, Masson G, Py S, Cividino P, Pandya US, Chapoulaud VG (2001) Synlett:1281

  47. Cisneros L, Serna P, Corma A (2014) Angew Chem Int Ed 53:9306

    Article  CAS  Google Scholar 

  48. Ung S, Falguieres A, Guy A, Ferroud C (2005) Tetrahedron Lett 46:5913

    Article  CAS  Google Scholar 

  49. Fieser LF, Fieser M (1967) Reagents for organic synthesis. Wiley, New York

    Google Scholar 

  50. Eskandari P, Kazemi F, Zand Z (2014) J Photochem Photobiol A Chem 274:7

    Article  CAS  Google Scholar 

  51. Zand Z, Kazemi F, Hosseini S (2014) Tetrahedron Lett 55:338

    Article  CAS  Google Scholar 

  52. Abdollahi-Kakroudi M, Kazemi F, Kaboudin B (2014) RSC Adv 4:52762

    Article  Google Scholar 

  53. Ramdar M, Kazemi F, Kaboudin B, Taran Z, Partovi A (2016) New J Chem 40:9257

    Article  CAS  Google Scholar 

  54. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  55. Kanemasa S, Tsuruoka T (1995) Chem Lett 24:49

    Article  Google Scholar 

  56. Cinar H, Tabatabai M, Ritter H (2012) Polym Int 61:692

    Article  CAS  Google Scholar 

  57. D’Souza DM, Leigh DA, Mottier L, Mullen KM, Paolucci F, Teat SJ, Zhang S (2010) J Am Chem Soc 132:9465

    Article  Google Scholar 

  58. Zhang Y, Song G, Ma G, Zhao J, Pan CL, Li X (2009) Organometallics 28:3233

    Article  CAS  Google Scholar 

  59. Simion C, Simion A, Mitoma Y, Nagashima S, Kawaji T, Hashimoto I, Tashiro M (2000) Heterocycles 53:2459

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Institute for Advanced Studies in Basic Sciences (IASBS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foad Kazemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, F., Ramdar, M., Tavana, B. et al. One-pot synthesis of nitrones from nitro compounds by in situ trapping of arylhydroxylamines. Monatsh Chem 148, 1101–1107 (2017). https://doi.org/10.1007/s00706-016-1896-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-016-1896-2

Keywords

Navigation