Skip to main content
Log in

Study of DNA immobilization on mica surface by atomic force microscopy

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Since its discovery, atomic force microscopy (AFM) is widely used to study biological objects and materials, including cells, proteins, and nucleic acids. AFM measurements are carried out in the air as well as in liquid with a very high resolution, even more complex bioprocesses can be monitored in situ under physiological conditions. Successful imaging of DNA molecules on the flat supporting surface typically requires appropriate treatment of mica. The original surface charge of mica is the same as of DNA, i.e. negative. Accordingly, immobilization using bivalent cations (Mg2+, Ni2+, and Co2+), deposition of ethanolamine, and mica surface silanization with alkoxysiloxane derivatives were reported to achieve an optimal concentration and surface arrangement of DNA molecules. Vapours of alkoxysiloxane derivatives led to uniform negatively charged mica surface and it was found that higher ionic radius causes a weaker bond. A better quality and sharper images of DNA molecules were achieved by adjusting the correct real amplitude of the cantilever. This amplitude should correspond with the expected size of the target objects—DNA molecules in the xy plane of the image. The length of the observed DNA molecules was 1000 bp and the planar width of DNA was 7.8 nm (in reality 3 nm). The AFM spectroscopic mode was particularly useful.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Santos NC, Castanho MARB (2004) Biophys Chem 107:133

    Article  CAS  Google Scholar 

  2. Riener CK, Stroh CM, Ebner A, Klampfl C, Gall AA, Romanin C, Lyubchenko YL, Hinterdorfer P, Gruber H (2003) Anal Chim Acta 479:59

    Article  CAS  Google Scholar 

  3. Lyubchenko Y, Shlyakhtenko L, Harrington R, Oden P, Lindsay S (1993) Proc Natl Acad Sci USA 90:2137

    Article  CAS  Google Scholar 

  4. Wickramasinghe HK (2000) Acta Mater 48:347

    Article  CAS  Google Scholar 

  5. Jalili N, Laxminarayana K (2004) Mechatronics 14:907

    Article  Google Scholar 

  6. Ikai A (1996) Surf Sci Rep 26:261

    Article  CAS  Google Scholar 

  7. Yin Y, Zech M, Williams TL, Hoffman JE (2009) Phys C 469:535

    Article  CAS  Google Scholar 

  8. Alessandrini A, Facci P (2005) Meas Sci Technol 16:R65

    Article  CAS  Google Scholar 

  9. Fotiadis D, Scheuring S, Müller SA, Engel A, Müller DJ (2002) Micron 33:385

    Article  CAS  Google Scholar 

  10. Jandt KD (2001) Surf Sci 491:303

    Article  CAS  Google Scholar 

  11. Butt HJ, Cappella B, Kappl M (2005) Surf Sci Rep 59:1

    Article  CAS  Google Scholar 

  12. Braga PC, Ricci D (2004) Atomic force microscopy: biomedical methods and applications. Humana Press, New Jersey

    Google Scholar 

  13. Alonso JL, Goldmann WH (2003) Life Sci 72:2553

    Article  CAS  Google Scholar 

  14. Ando T, Uchihashi T, Fukuma T (2008) Prog Surf Sci 83:337

    Article  CAS  Google Scholar 

  15. Bhushan B, Kawata S (2006) Applied scanning probe methods VI: characterization. In: Thomson NH (ed) Atomic force microscopy of DNA structure and interactions. Springer, Berlin, p 127

    Google Scholar 

  16. Lyubchenko YL, Shlyakhtenko LS, Ando T (2011) Methods 54:274

    Article  CAS  Google Scholar 

  17. Bezanilla M, Manne S, Laney DE, Lyubchenko YL, Hansma HG (1995) Langmuir 11:655

    Article  CAS  Google Scholar 

  18. Zheng J, Li Z, Wu A, Zhou H (2003) Biophys Chem 104:37

    Article  CAS  Google Scholar 

  19. Sun XG, Cao EH, Zhang X, Liu D, Bai C (2002) Inorg Chem Commun 5:181

    Article  CAS  Google Scholar 

  20. Sasou M, Sugiyama S, Yoshino T, Ohtani T (2003) Langmuir 19:9845

    Article  CAS  Google Scholar 

  21. White LD, Tripp CP (2000) J Colloid Interface Sci 232:400

    Article  CAS  Google Scholar 

  22. Costa LT, Pinto JR, Moraes MB, De Souza GGB, Sorenson MM, Bisch PM, Weissmuller G (2004) Biophys Chem 109:63

    Article  CAS  Google Scholar 

  23. Campbell PA, Sinnamon LJ, Thompson CE, Walmsley DG (1998) Surf Sci 410:L768

    Article  CAS  Google Scholar 

  24. Liu Z, Li Z, Zhou H, Wei G, Song Y, Wang L (2005) Micron 36:525

    Article  CAS  Google Scholar 

  25. Ouerghi O, Touhami A, Othmane A, Ben Ouada H, Martelet C, Fretigny C, Jaffrezic-Renault N (2002) Sens Actuators B Chem 84:167

    Article  CAS  Google Scholar 

  26. Thormann E, Pettersson T, Kettle J, Claesson PM (2010) Ultramicroscopy 110:313

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Central European Institute of Technology (CZ.1.05/1.1.00/02.0068) from European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Skládal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horňáková, V., Přibyl, J. & Skládal, P. Study of DNA immobilization on mica surface by atomic force microscopy. Monatsh Chem 147, 865–871 (2016). https://doi.org/10.1007/s00706-016-1695-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-016-1695-9

Keywords

Navigation