Skip to main content
Log in

Identification and quantification of the fatty acids and isolation of (+)-pinitol, liriodenine, and (−)-N-acetyl-anonaine from empty capsules of Michelia champaca fruits. Crystal structure of (−)-N-acetylanonaine

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The identity of fatty acids, as their methyl esters, present in the empty seed pods of Michelia champaca is reported as well as the characterisation of three compounds, namely (+)-pinitol, liriodenine, and (−)-N-acetylanonaine. The identification of these compounds was generally obtained by spectroscopic methods, and additionally by X-ray crystallography for N-acetylanonaine. The antimicrobial activity of the isolated compounds against the Gram-positive test strains Bacillus cereus ATCC 11778, Listeria monocitogenes ATCC 15313, and Staphylococcus aureus ATCC 29213 is described. In general (−)-N-acetylanonaine was the most active compound. However, the selectivity of liriodenine towards S. aureus suggests that further study would be worthwhile. (−)-N-Acetylanonaine crystallizes in the orthorhombic space group P212121 with a = 6.0773(2) Å, b = 11.6053(5) Å, c = 20.9906(9) (11) Å, and Z = 4.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Perry LM (1980) Medicinal plants of East and Southeast Asia: attributed properties and uses. The MIT Press, Cambridge, Massachusetts, p 154

    Google Scholar 

  2. Vimala R, Nagarajan S, Alam M, Susan T, Joy S (1997) Indian J Exp Biol 35:1310

    CAS  Google Scholar 

  3. Elizabeth KM, Lakshmi YAS (2005) Asian J Chem 18:196

    Google Scholar 

  4. Ananthi T, Chitra M, Aruna B (2014) Int J Pharm Biosci 5:351

    Google Scholar 

  5. Wei LS, Wee W, Siong JYF, Syamsumir DF (2011) Stanford J Pharm Sci 4:19

    CAS  Google Scholar 

  6. Khan MR, Kihara M, Omoloso AD (2002) Fitoterapia 73:744

    Article  CAS  Google Scholar 

  7. Takahashi M, Fuchino H, Satake M, Agatsuma Y, Sekita S (2004) Biol Pharm Bull 27:921

    Article  CAS  Google Scholar 

  8. Hoffmann JJ, Torrance SJ, Wiedhopf RM, Cole JR (1977) J Pharm Sci 66:883

    Article  CAS  Google Scholar 

  9. Bedi KL, Atal CK (1970) J Ind J Chem 8:325

    CAS  Google Scholar 

  10. Mandal B, Maity CR (1992) Acta Aliment 21:131

    CAS  Google Scholar 

  11. Banerjee SK, Chakravarti RN, Fales HM (1964) Bull Calcutta Sch Trop Med 12:23

    Google Scholar 

  12. Majumder PL, Chatterjee A (1963) J Ind Chem Soc 40:929

    CAS  Google Scholar 

  13. Monteiro MCM, Leptokarydis IH, Silva GH, da Silva VC, Bolzani VS, Young MCM, Lopes MN (2007) Ecletica Quim 32:13

    Article  CAS  Google Scholar 

  14. Huang CT, Chen SJ, Wu HM, Kang YF, Chen HL, Li WJ, Li HT, Chen CY (2014) Chem Nat Comp 50:1047

    CAS  Google Scholar 

  15. Yeh YT, Huang JC, Kuo PL, Chen CY (2011) Nat Prod Commun 6:1251

    CAS  Google Scholar 

  16. Kapoor S, Jaggi RK (2004) Ind J Pharm Sci 66:403

    CAS  Google Scholar 

  17. Sharma S, Mehta BK (1998) Ind J Chem 37B:1219

    CAS  Google Scholar 

  18. Balurgi VC, Rojatkar SR, Pujar PP, Patwardhan BK, Nagasampagi BA (1997) Ind Drugs 34:415

    CAS  Google Scholar 

  19. Jacobsson U, Kumar V, Saminathan S (1995) Phytochemistry 39:839

    Article  CAS  Google Scholar 

  20. Sethi VK, Thappa RK, Dhar KL, Atal CK (1984) Planta Med 50:364

    Article  CAS  Google Scholar 

  21. Hosamani KM, Hiremath VB, Keri RS (2009) Biomass Energy 33:267

    Article  CAS  Google Scholar 

  22. Baccouri B, Zarrouk W, Krichene D, Nouairi I, Ben Youssef N, Daoud D, Zarrouk M (2007) J Agron 6:388

    Article  CAS  Google Scholar 

  23. Jahurul MHA, Zaidul ISM, Norulaini NAN, Sahena F, Jinap S, Azmir J, Sharif KM, Omar AKM (2013) J Food Eng 117:467

    Article  CAS  Google Scholar 

  24. Segall SD, Artz WE, Raslan DS, Ferraz VP, Takahashi JA (2006) J Sci Food Agric 86:445

    Article  CAS  Google Scholar 

  25. Hudlicky T, Rulin F, Tsunoda T, Luna H, Andersen C, Price JD (1991) Israel J Chem 31:229

    Article  CAS  Google Scholar 

  26. Kim MJ, Yoo KH, Kim JH, Seo YT, Ha BW, Kho JH, Shin YG, Chung CH (2007) Diabetes Res Clin Pract 77:S247

    Article  CAS  Google Scholar 

  27. Sethi G, Ahn KS, Sung B, Aggarwal BB (2008) Mol Cancer Ther 7:1604

    Article  CAS  Google Scholar 

  28. Azimova SS, Yunusov MS (eds) (2013) Natural compounds–alkaloids. Springer, New York, p 355

    Google Scholar 

  29. Chen ZF, Liu YC, Peng Y, Hong X, Wang HH, Zhang MM, Liang H (2012) Synth J Biol Inorg Chem 17:247

    Article  CAS  Google Scholar 

  30. Goh SH, Jantaan I (1992) Phytochemistry 31:2495 (and refs therein)

    Article  CAS  Google Scholar 

  31. Guinaudeau H, Leboeuf M, Cave A (1983) J Nat Prod 46:761

    Article  CAS  Google Scholar 

  32. Zhang Z, ElSohly HN, Jacob MR, Pasco DS, Walker LA, Clark AM (2002) J Nat Prod 65:856

    Article  CAS  Google Scholar 

  33. Ruangrungsi N, Rivepiboon A, Lange GL, Lee M, Decicco CP, Picha P, Preechanukool K (1987) J Nat Prod 50:891

    Article  CAS  Google Scholar 

  34. Chen CY, Wu HM, Chao WY, Lee CH (2013) Afr J Pharm Pharmacol 7:1067 and refs therein

    Article  Google Scholar 

  35. Nonatom MG, Garson AJ, Truscott RJW, Carver JA (1990) J Nat Prod 53:1623

    Article  Google Scholar 

  36. Rao KV, Davies R (1986) J Nat Prod 49:340

    Article  CAS  Google Scholar 

  37. Jantan I, Raweh SM, Yasin YHM, Murad S (2006) Phytotherapy Res 20:493

    Article  CAS  Google Scholar 

  38. Barnhill AE, Brewer MT, Carlson SA (2012) Antimicrob Agents Chemother 56:4046

    Article  CAS  Google Scholar 

  39. Lee N, Sun JM, Kwon KY, Kim HJ, Koo M, Chun HS (2012) J Food Protect 75:225

    Article  CAS  Google Scholar 

  40. Hooft RWW (1998) COLLECT, Data collection software. Nonius BV, Delft

    Google Scholar 

  41. Otwinowski Z, Minor W Jr (1997) Processing of X-ray diffraction data collected in oscillation mode. In: Carter CW, Sweet RM (eds) Methods in Enzymology. Academic Press, New York, p 307 (vol. 276, Macromolecular crystallography, Part A)

    Google Scholar 

  42. Sheldrick GM (2007) SADABS Version 2007/2. Bruker AXS Inc, Madison

    Google Scholar 

  43. Mercury 3.3 (2013) Cambridge Crystallographic Data Centre, UK

  44. Sheldrick GM (2008) Acta Crystallogr A 64:112

    Article  CAS  Google Scholar 

  45. Spek AJ (2003) J Appl Crystallogr 36:7

    Article  CAS  Google Scholar 

  46. Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Am J Clin Pathol 45:493

    CAS  Google Scholar 

Download references

Acknowledgments

The use of the NCS crystallographic service at Southampton and the valuable assistance of the staff there are gratefully acknowledged. JAT thanks FAPEMIG and CNPq for support: JLW thanks FAPERJ and CNPq, Brazil for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline A. Takahashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, J.A., Floreano, M.B., Oliveira, M.S. et al. Identification and quantification of the fatty acids and isolation of (+)-pinitol, liriodenine, and (−)-N-acetyl-anonaine from empty capsules of Michelia champaca fruits. Crystal structure of (−)-N-acetylanonaine. Monatsh Chem 146, 1763–1770 (2015). https://doi.org/10.1007/s00706-015-1554-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1554-0

Keywords

Navigation