Skip to main content

Advertisement

Log in

Current trends and new approaches for human norovirus replication in cell culture: a literature review

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Human norovirus (HuNoV) is one of the world’s leading causes of acute gastroenteritis. At present, effective reproduction of the virus in cell cultures remains a challenge for virologists, as there is a lack of a permissive cell line that allows the entire viral life cycle to be reproduced. This is a barrier to the study of the HuNoV life cycle, its tropism, and virus-host interactions. It is also a major hurdle for the development of viral detection platforms, and ultimately for the development of therapeutics. The lack of an inexpensive, technically simple, and easily implemented cultivation method also negatively affects our ability to evaluate the efficacy of a variety of control measures (disinfectants, food processes) for human norovirus. In the process of monitoring this pathogen, it is necessary to detect infectious viral particles in water, food, and other environmental samples. Therefore, improvement of in vitro replication of HuNoV is still needed. In this review, we discuss current trends and new approaches to HuNoV replication in cell culture. We highlight ways in which previous research on HuNoV and other noroviruses has guided and influenced the development of new HuNoV culture systems and discuss the improvement of in vitro replication of HuNoV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kapikian AZ, Wyatt RG, Dolin R et al (1972) Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis. J Virol 10:1075–1081. https://doi.org/10.1128/JVI.10.5.1075-1081.1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ludwig-Begall LF, Mauroy A, Thiry E (2021) Noroviruses-The State of the Art, Nearly Fifty Years after Their Initial Discovery. Viruses 13:1–36. https://doi.org/10.3390/v13081541

    Article  CAS  Google Scholar 

  3. Green KY (2013) Caliciviridae: The Noroviruses. Lippincott Williams & Wilkins, a Wolters Kluwer Business., Philadelphia, pp 582–608

    Google Scholar 

  4. Capece G, Gignac E (2022) Norovirus. In: StatPearls. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  5. Karst SM, Wobus CE (2015) A working model of how noroviruses infect the intestine. PLoS Pathog 11:e1004626. https://doi.org/10.1371/journal.ppat.1004626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lindesmith L, Moe C, Marionneau S et al (2003) Human susceptibility and resistance to Norwalk virus infection. Nat Med 9:548–553. https://doi.org/10.1038/nm860

    Article  CAS  PubMed  Google Scholar 

  7. Ge Y, Billings WZ, Opekun A et al (2023) Effect of Norovirus Inoculum Dose on Virus Kinetics, Shedding, and Symptoms. Emerg Infect Dis 29. https://doi.org/10.3201/eid2907.230117

  8. Rouphael N, Beck A, Kirby AE et al (2022) Dose-Response of a Norovirus GII.2 Controlled Human Challenge Model Inoculum. J Infect Dis 226:1771–1780. https://doi.org/10.1093/infdis/jiac045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Teunis PFM, Sukhrie FHA, Vennema H et al (2015) Shedding of norovirus in symptomatic and asymptomatic infections. Epidemiol Infect 143:1710–1717. https://doi.org/10.1017/S095026881400274X

    Article  CAS  PubMed  Google Scholar 

  10. Green KY (2014) Norovirus infection in immunocompromised hosts. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology. Infect Dis 20:717–723. https://doi.org/10.1111/1469-0691.12761

    Article  CAS  Google Scholar 

  11. Woodward J, Gkrania-Klotsas E, Kumararatne D (2017) Chronic norovirus infection and common variable immunodeficiency. Clin Exp Immunol 188:363–370. https://doi.org/10.1111/cei.12884

    Article  CAS  PubMed  Google Scholar 

  12. Ghosh S, Kumar M, Santiana M et al (2022) Enteric viruses replicate in salivary glands and infect through saliva. Nature 607:345–350. https://doi.org/10.1038/s41586-022-04895-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kageyama T, Shinohara M, Uchida K et al (2004) Coexistence of multiple genotypes, including newly identified genotypes, in outbreaks of gastroenteritis due to Norovirus in Japan. J Clin Microbiol 42:2988–2995. https://doi.org/10.1128/JCM.42.7.2988-2995.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Glowacka I, Harste G, Witthuhn J, Heim A (2016) An Improved One-Step Real-Time Reverse Transcription-PCR Assay for Detection of Norovirus. J Clin Microbiol 54:497–499. https://doi.org/10.1128/JCM.02206-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cannon JL, Barclay L, Collins NR et al (2017) Genetic and Epidemiologic Trends of Norovirus Outbreaks in the United States from 2013 to 2016 Demonstrated Emergence of Novel GII.4 Recombinant Viruses. J Clin Microbiol 55:2208–2221. https://doi.org/10.1128/JCM.00455-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kojima S, Kageyama T, Fukushi S et al (2002) Genogroup-specific PCR primers for detection of Norwalk-like viruses. J Virol Methods 100:107–114. https://doi.org/10.1016/s0166-0934(01)00404-9

    Article  CAS  PubMed  Google Scholar 

  17. Robilotti E, Deresinski S, Pinsky BA (2015) Norovirus. Clin Microbiol Rev 28:134–164. https://doi.org/10.1128/CMR.00075-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Souza M, Costantini V, Azevedo MSP, Saif LJ (2007) A human norovirus-like particle vaccine adjuvanted with ISCOM or mLT induces cytokine and antibody responses and protection to the homologous GII.4 human norovirus in a gnotobiotic pig disease model. Vaccine 25:8448–8459. https://doi.org/10.1016/j.vaccine.2007.09.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lindesmith LC, Donaldson EF, Lobue AD et al (2008) Mechanisms of GII.4 norovirus persistence in human populations. PLoS Med 5:e31. https://doi.org/10.1371/journal.pmed.0050031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. (2020) ICTV Taxonomy history: Norwalk virus

  21. Hardy ME (2005) Norovirus protein structure and function. FEMS Microbiol Lett 253:1–8. https://doi.org/10.1016/j.femsle.2005.08.031

    Article  CAS  PubMed  Google Scholar 

  22. Chhabra P, de Graaf M, Parra GI et al (2019) Updated classification of norovirus genogroups and genotypes. J Gen Virol 100:1393–1406. https://doi.org/10.1099/jgv.0.001318

    Article  PubMed  PubMed Central  Google Scholar 

  23. Netzler NE, Enosi Tuipulotu D, White PA (2019) Norovirus antivirals: Where are we now? Med Res Rev 39:860–886. https://doi.org/10.1002/med.21545

    Article  PubMed  Google Scholar 

  24. Graziano VR, Wei J, Wilen CB (2019) Norovirus Attachment and Entry. Viruses 11:1–13. https://doi.org/10.3390/v11060495

    Article  CAS  Google Scholar 

  25. Parra GI, Squires RB, Karangwa CK et al (2017) Static and Evolving Norovirus Genotypes: Implications for Epidemiology and Immunity. PLoS Pathog 13:e1006136. https://doi.org/10.1371/journal.ppat.1006136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ford-Siltz LA, Mullis L, Sanad YM et al (2019) Genomics Analyses of GIV and GVI Noroviruses Reveal the Distinct Clustering of Human and Animal Viruses. Viruses 11:1–16. https://doi.org/10.3390/v11030204

    Article  CAS  Google Scholar 

  27. Kilic T, Koromyslova A, Malak V, Hansman GS (2018) Atomic Structure of the Murine Norovirus Protruding Domain and Soluble CD300lf Receptor Complex. J Virol 92:e00413–e00418. https://doi.org/10.1128/JVI.00413-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marionneau S, Ruvoën N, Le Moullac-Vaidye B et al (2002) Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 122:1967–1977. https://doi.org/10.1053/gast.2002.33661

    Article  CAS  PubMed  Google Scholar 

  29. Conley MJ, McElwee M, Azmi L et al (2019) Calicivirus VP2 forms a portal-like assembly following receptor engagement. Nature 565:377–381. https://doi.org/10.1038/s41586-018-0852-1

    Article  CAS  PubMed  Google Scholar 

  30. Chang K-O, Sosnovtsev SV, Belliot G et al (2004) Bile acids are essential for porcine enteric calicivirus replication in association with down-regulation of signal transducer and activator of transcription 1. Proc Natl Acad Sci U S A 101:8733–8738. https://doi.org/10.1073/pnas.0401126101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Karst SM, Tibbetts SA (2016) Recent advances in understanding norovirus pathogenesis. J Med Virol 88:1837–1843. https://doi.org/10.1002/jmv.24559

    Article  PubMed  PubMed Central  Google Scholar 

  32. Thorne LG, Goodfellow IG (2014) Norovirus gene expression and replication. J Gen Virol 95:278–291. https://doi.org/10.1099/vir.0.059634-0

    Article  CAS  PubMed  Google Scholar 

  33. Hassan E, Baldridge MT (2019) Norovirus encounters in the gut: multifaceted interactions and disease outcomes. Mucosal Immunol 12:1259–1267. https://doi.org/10.1038/s41385-019-0199-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chang JG, Yang TY, Liu TC et al (1999) Molecular analysis of secretor type alpha(1,2)-fucosyltransferase gene mutations in the Chinese and Thai populations. Transfusion 39:1013–1017. https://doi.org/10.1046/j.1537-2995.1999.39091013.x

    Article  CAS  PubMed  Google Scholar 

  35. Atmar RL, Estes MK (2006) The epidemiologic and clinical importance of norovirus infection. Gastroenterol Clin N Am 35:275–290. https://doi.org/10.1016/j.gtc.2006.03.001. viii

  36. Lindesmith LC, Ferris MT, Mullan CW et al (2015) Broad blockade antibody responses in human volunteers after immunization with a multivalent norovirus VLP candidate vaccine: immunological analyses from a phase I clinical trial. PLoS Med 12:e1001807. https://doi.org/10.1371/journal.pmed.1001807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nordgren J, Nitiema LW, Ouermi D et al (2013) Host genetic factors affect susceptibility to norovirus infections in Burkina Faso. PLoS ONE 8:e69557. https://doi.org/10.1371/journal.pone.0069557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Singh BK, Leuthold MM, Hansman GS (2015) Human noroviruses’ fondness for histo-blood group antigens. J Virol 89:2024–2040. https://doi.org/10.1128/JVI.02968-14

    Article  CAS  PubMed  Google Scholar 

  39. Donaldson EF, Lindesmith LC, Lobue AD, Baric RS (2010) Viral shape-shifting: norovirus evasion of the human immune system. Nat Rev Microbiol 8:231–241. https://doi.org/10.1038/nrmicro2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ruvoën-Clouet N, Magalhaes A, Marcos-Silva L et al (2014) Increase in genogroup II.4 norovirus host spectrum by CagA-positive Helicobacter pylori infection. J Infect Dis 210:183–191. https://doi.org/10.1093/infdis/jiu054

    Article  CAS  PubMed  Google Scholar 

  41. White LJ, Ball JM, Hardy ME et al (1996) Attachment and entry of recombinant Norwalk virus capsids to cultured human and animal cell lines. J Virol 70:6589–6597. https://doi.org/10.1128/JVI.70.10.6589-6597.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Duizer E, Schwab KJ, Neill FH et al (2004) Laboratory efforts to cultivate noroviruses. J Gen Virol 85:79–87. https://doi.org/10.1099/vir.0.19478-0

    Article  CAS  PubMed  Google Scholar 

  43. Chang K-O, Sosnovtsev SV, Belliot G et al (2006) Stable expression of a Norwalk virus RNA replicon in a human hepatoma cell line. Virology 353:463–473. https://doi.org/10.1016/j.virol.2006.06.006

    Article  CAS  PubMed  Google Scholar 

  44. Bok K, Parra GI, Mitra T et al (2011) Chimpanzees as an animal model for human norovirus infection and vaccine development. Proc Natl Acad Sci USA 108:325–330. https://doi.org/10.1073/pnas.1014577107

    Article  PubMed  Google Scholar 

  45. Van Dycke J, Ny A, Conceição-Neto N et al (2019) A robust human norovirus replication model in zebrafish larvae. PLoS Pathog 15:e1008009. https://doi.org/10.1371/journal.ppat.1008009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Amano J, Oshima M (1999) Expression of the H Type 1 Blood Group Antigen during Enterocytic Differentiation of Caco-2 Cells. J Biol Chem 274:21209–21216. https://doi.org/10.1074/JBC.274.30.21209

    Article  CAS  PubMed  Google Scholar 

  47. Tan M, Jiang X (2011) Norovirus-host interaction: multi-selections by human histo-blood group antigens. Trends Microbiol 19:382–388. https://doi.org/10.1016/j.tim.2011.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jones MK, Watanabe M, Zhu S et al (2014) Enteric bacteria promote human and mouse norovirus infection of B cells. Science 346:755–759. https://doi.org/10.1126/science.1257147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Karst SM (2015) Identification of a novel cellular target and a co-factor for norovirus infection - B cells & commensal bacteria. Gut Microbes 6:266–271. https://doi.org/10.1080/19490976.2015.1052211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jones MK, Grau KR, Costantini V et al (2015) Human norovirus culture in B cells. Nat Protoc 10:1939–1947. https://doi.org/10.1038/nprot.2015.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Goodwin TJ, Schroeder WF, Wolf DA, Moyer MP (1993) Rotating-wall vessel coculture of small intestine as a prelude to tissue modeling: aspects of simulated microgravity. Proc Soc Experimental Biology Med Soc Experimental Biology Med (New York NY) 202:181–192. https://doi.org/10.3181/00379727-202-43525

    Article  CAS  Google Scholar 

  52. Nickerson CA, Goodwin TJ, Terlonge J et al (2001) Three-dimensional tissue assemblies: novel models for the study of Salmonella enterica serovar Typhimurium pathogenesis. Infect Immun 69:7106–7120. https://doi.org/10.1128/IAI.69.11.7106-7120.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gardner JK, Herbst-Kralovetz MM (2016) Three-Dimensional Rotating Wall Vessel-Derived Cell Culture Models for Studying Virus-Host Interactions. Viruses 8:1–17. https://doi.org/10.3390/v8110304

    Article  CAS  Google Scholar 

  54. Straub TM, Höner zu Bentrup K, Orosz-Coghlan P et al (2007) In vitro cell culture infectivity assay for human noroviruses. Emerg Infect Dis 13:396–403. https://doi.org/10.3201/eid1303.060549

    Article  PubMed  PubMed Central  Google Scholar 

  55. Straub TM, Bartholomew RA, Valdez CO et al (2011) Human norovirus infection of caco-2 cells grown as a three-dimensional tissue structure. J Water Health 9:225–240. https://doi.org/10.2166/wh.2010.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Papafragkou E, Hewitt J, Park GW et al (2013) Challenges of Culturing Human Norovirus in Three-Dimensional Organoid Intestinal Cell Culture Models. PLoS ONE 8:e63485. https://doi.org/10.1371/journal.pone.0063485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Herbst-Kralovetz MM, Radtke AL, Lay MK et al (2013) Lack of norovirus replication and histo-blood group antigen expression in 3-dimensional intestinal epithelial cells. Emerg Infect Dis 19:431–438. https://doi.org/10.3201/eid1903.121029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Takanashi S, Saif LJ, Hughes JH et al (2014) Failure of propagation of human norovirus in intestinal epithelial cells with microvilli grown in three-dimensional cultures. Arch Virol 159:257–266. https://doi.org/10.1007/s00705-013-1806-4

    Article  CAS  PubMed  Google Scholar 

  59. Fotopoulos G, Harari A, Michetti P et al (2002) Transepithelial transport of HIV-1 by M cells is receptor-mediated. Proc Natl Acad Sci USA 99:9410–9414. https://doi.org/10.1073/pnas.142586899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kraehenbuhl J-P, Neutra MR (2000) Epithelial M cells: Differentiation and Function. Annu Rev Cell Dev Biol 16:301–333. https://doi.org/10.1146/annurev.cellbio.16.1.301

    Article  CAS  PubMed  Google Scholar 

  61. Kerneis S (1997) Conversion by Peyer’s Patch Lymphocytes of Human Enterocytes into M Cells that Transport Bacteria. Science 277:949–952. https://doi.org/10.1126/science.277.5328.949

    Article  CAS  PubMed  Google Scholar 

  62. Kernéis S, Caliot E, Stubbe H et al (2000) Molecular studies of the intestinal mucosal barrier physiopathology using cocultures of epithelial and immune cells: a technical update. Microbes Infect 2:1119–1124. https://doi.org/10.1016/s1286-4579(00)01266-1

    Article  PubMed  Google Scholar 

  63. Martin-Latil S, Gnädig NF, Mallet A et al (2012) Transcytosis of HTLV-1 across a tight human epithelial barrier and infection of subepithelial dendritic cells. Blood 120:572–580. https://doi.org/10.1182/blood-2011-08-374637

    Article  CAS  PubMed  Google Scholar 

  64. Ouzilou L, Caliot E, Pelletier I et al (2002) Poliovirus transcytosis through M-like cells. J Gen Virol 83:2177–2182. https://doi.org/10.1099/0022-1317-83-9-2177

    Article  CAS  PubMed  Google Scholar 

  65. Wobus CE, Karst SM, Thackray LB et al (2004) Replication of Norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol 2:e432. https://doi.org/10.1371/journal.pbio.0020432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Agus SG, Dolin R, Wyatt RG (1973) Acute infectious nonbacterial gastroenteritis: intestinal histopathology. Histologic and enzymatic alterations during illness produced by the Norwalk agent in man. Ann Intern Med 78:18–25. https://doi.org/10.7326/0003-4819-79-1-18

    Article  Google Scholar 

  67. Kowal J, Tkach M, Théry C (2014) Biogenesis and secretion of exosomes. Curr Opin Cell Biol 29:116–125. https://doi.org/10.1016/j.ceb.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  68. Santiana M, Ghosh S, Ho BA et al (2018) Vesicle-Cloaked Virus Clusters Are Optimal Units for Inter-organismal Viral Transmission. Cell Host Microbe 24:208–220e8. https://doi.org/10.1016/j.chom.2018.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bhar S, Jones MK (2019) In Vitro Replication of Human Norovirus. Viruses 11:1–13. https://doi.org/10.3390/v11060547

    Article  CAS  Google Scholar 

  70. Mirabelli C, Jones MK, Young VL et al (2022) Human Norovirus Triggers Primary B Cell Immune Activation. Vitro mBio 13:e00175–e00122. https://doi.org/10.1128/mbio.00175-22

    Article  CAS  PubMed  Google Scholar 

  71. Brown JR, Gilmour K, Breuer J (2016) Norovirus Infections Occur in B-Cell–Deficient Patients: Table 1. Clin Infect Dis 62:1136–1138. https://doi.org/10.1093/cid/ciw060

    Article  PubMed  Google Scholar 

  72. Chen Y, Wu Q, Li G et al (2022) Identification and genetic characterization of a minor norovirus genotype, GIX.1[GII.P15], from China. BMC Genom Data 23:50. https://doi.org/10.1186/s12863-022-01066-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sato T, Stange DE, Ferrante M et al (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141:1762–1772. https://doi.org/10.1053/j.gastro.2011.07.050

    Article  CAS  PubMed  Google Scholar 

  74. Ettayebi K, Crawford SE, Murakami K et al (2016) Replication of human noroviruses in stem cell-derived human enteroids. Science 353:1387–1393. https://doi.org/10.1126/science.aaf5211

    Article  PubMed  PubMed Central  Google Scholar 

  75. Saxena K, Blutt SE, Ettayebi K et al (2016) Human Intestinal Enteroids: a New Model To Study Human Rotavirus Infection, Host Restriction, and Pathophysiology. J Virol 90:43–56. https://doi.org/10.1128/JVI.01930-15

    Article  CAS  PubMed  Google Scholar 

  76. Fuller MK, Faulk DM, Sundaram N et al (2012) Intestinal crypts reproducibly expand in culture. J Surg Res 178:48–54. https://doi.org/10.1016/j.jss.2012.03.037

    Article  PubMed  PubMed Central  Google Scholar 

  77. Murakami K, Tenge VR, Karandikar UC et al (2020) Bile acids and ceramide overcome the entry restriction for GII.3 human norovirus replication in human intestinal enteroids. Proc Natl Acad Sci USA 117:1700–1710. https://doi.org/10.1073/pnas.1910138117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Haga K, Ettayebi K, Tenge VR et al (2020) Genetic Manipulation of Human Intestinal Enteroids Demonstrates the Necessity of a Functional Fucosyltransferase 2 Gene for Secretor-Dependent Human Norovirus Infection. mBio 11:e00251–e00220. https://doi.org/10.1128/mBio.00251-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Green KY, Kaufman SS, Nagata BM et al (2020) Human norovirus targets enteroendocrine epithelial cells in the small intestine. Nat Commun 11:2759. https://doi.org/10.1038/s41467-020-16491-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Estes MK, Ettayebi K, Tenge VR et al (2019) Human Norovirus Cultivation in Nontransformed Stem Cell-Derived Human Intestinal Enteroid Cultures: Success and Challenges. Viruses 11:1–12. https://doi.org/10.3390/v11070638

    Article  CAS  Google Scholar 

  81. Costantini V, Morantz EK, Browne H et al (2018) Human Norovirus Replication in Human Intestinal Enteroids as Model to Evaluate Virus Inactivation. Emerg Infect Dis 24:1453–1464. https://doi.org/10.3201/eid2408.180126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ettayebi K, Tenge VR, Cortes-Penfield NW et al (2021) New Insights and Enhanced Human Norovirus Cultivation in Human Intestinal Enteroids. mSphere 6:e01136–e01120. https://doi.org/10.1128/mSphere.01136-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sato S, Hisaie K, Kurokawa S et al (2019) Human Norovirus Propagation in Human Induced Pluripotent Stem Cell–Derived Intestinal Epithelial Cells. Cell Mol Gastroenterol Hepatol 7:686–688e5. https://doi.org/10.1016/j.jcmgh.2018.11.001

    Article  PubMed  Google Scholar 

  84. Mirabelli C, Santos-Ferreira N, Gillilland MG et al (2022) Human Norovirus Efficiently Replicates in Differentiated 3D-Human Intestinal Enteroids. J Virol 96:e00855–e00822. https://doi.org/10.1128/jvi.00855-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Alvarado G, Ettayebi K, Atmar RL et al (2018) Human Monoclonal Antibodies That Neutralize Pandemic GII.4 Noroviruses. Gastroenterology 155:1898–1907. https://doi.org/10.1053/j.gastro.2018.08.039

    Article  CAS  PubMed  Google Scholar 

  86. Atmar RL, Ettayebi K, Ayyar BV et al (2019) Comparison of Microneutralization and Histo-Blood Group Antigen–Blocking Assays for Functional Norovirus Antibody Detection. J Infect Dis jiz 526. https://doi.org/10.1093/infdis/jiz526

  87. Overbey KN, Zachos NC, Coulter C, Schwab KJ (2021) Optimizing Human Intestinal Enteroids for Environmental Monitoring of Human Norovirus. Food Environ Virol 13:470–484. https://doi.org/10.1007/s12560-021-09486-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wales SQ, Kulka M, Keinard B et al (2023) Use of Human Intestinal Enteroids for Recovery of Infectious Human Norovirus from Berries and Lettuce. Foods 12:4286. https://doi.org/10.3390/foods12234286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hayashi T, Murakami K, Hirano J et al (2021) Dasabuvir Inhibits Human Norovirus Infection in Human Intestinal Enteroids. mSphere 6:e00623–e00621. https://doi.org/10.1128/mSphere.00623-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lin S-C, Qu L, Ettayebi K et al (2020) Human norovirus exhibits strain-specific sensitivity to host interferon pathways in human intestinal enteroids. Proc Natl Acad Sci USA 117:23782–23793. https://doi.org/10.1073/pnas.2010834117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Escudero-Abarca BI, Goulter RM, Arbogast JW et al (2020) Efficacy of alcohol‐based hand sanitizers against human norovirus using RNase‐RT‐qPCR with validation by human intestinal enteroid replication. Lett Appl Microbiol 71:605–610. https://doi.org/10.1111/lam.13393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ettayebi K, Salmen W, Imai K et al (2022) Antiviral Activity of Olanexidine-Containing Hand Rub against Human Noroviruses. mBio 13:e02848–e02821. https://doi.org/10.1128/mbio.02848-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Haga K, Fujimoto A, Takai-Todaka R et al (2016) Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells. Proc Natl Acad Sci USA 113:E6248–E6255. https://doi.org/10.1073/pnas.1605575113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chan MC-W, Cheung SKC, Mohammad KN et al (2019) Use of Human Intestinal Enteroids to Detect Human Norovirus Infectivity. Emerg Infect Dis 25:1730–1735. https://doi.org/10.3201/eid2509.190205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Orchard RC, Wilen CB, Doench JG et al (2016) Discovery of a proteinaceous cellular receptor for a norovirus. Sci (New York NY) 353:933–936. https://doi.org/10.1126/science.aaf1220

    Article  CAS  Google Scholar 

  96. Graziano VR, Walker FC, Kennedy EA et al (2020) CD300lf is the primary physiologic receptor of murine norovirus but not human norovirus. PLoS Pathog 16:e1008242. https://doi.org/10.1371/journal.ppat.1008242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Well-being (scientific study no. 123051100045-0).

Author information

Authors and Affiliations

Authors

Contributions

Wasielewski V.V.: database search, data analysis and interpretation, text drafting. Itani T.M.: text drafting, academic advising, and editing. Zakharova Yu. A.: academic advising and editing. Semenov A.V.: the concept of the review and editing. All authors read and approved the final draft.

Corresponding author

Correspondence to Tarek M. Itani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could appear to influence the work reported in this paper.

Additional information

Communicated by Martin Chan

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasielewski, V.V., Itani, T.M., Zakharova, Y.A. et al. Current trends and new approaches for human norovirus replication in cell culture: a literature review. Arch Virol 169, 71 (2024). https://doi.org/10.1007/s00705-024-05999-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-024-05999-4

Navigation