Skip to main content

Advertisement

Log in

Unravelling the epidemiological diversity of Zika virus by analyzing key protein variations

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The consequences of Zika virus (ZIKV) infections were limited to sporadic mild diseases until almost a decade ago, when epidemic outbreaks took place, with quick spread into the Americas. Simultaneously, novel severe neurological manifestations of ZIKV infections were identified, including congenital microcephaly. However, why the epidemic strains behave differently is not yet completely understood, and many questions remain about the actual significance of genetic variations in the epidemiology and biology of ZIKV. In this study, we analysed a large number of viral sequences to identify genes with different levels of variability and patterns of genomic variations that could be associated with ZIKV diversity. We compared numerous epidemic strains with pre-epidemic strains, using the BWA-mem algorithm, and we also examined specific variations among the epidemic ZIKV strains derived from microcephaly cases. We identified several viral genes with dissimilar mutation rates among the ZIKV strain groups and novel protein variation profiles that might be associated with epidemiological particularities. Finally, we assessed the impact of the detected changes on the structure and stability of the NS1, NS5, and E proteins using the I-TASSER, trRosetta, and RaptorX modelling algorithms, and we found some interesting variations that might help to explain the heterogeneous features of the diverse ZIKA strains. This work contributes to the identification of genetic differences in the ZIKV genome that might have a phenotypic impact, providing a basis for future experimental analysis to elucidate the genetic causes of the recent ZIKV emergency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article and its supplementary information files, and the code used for the analysis is publically available in the GitHub repository at https://github.com/Santi8Leiva/Zika.

Abbreviations

BWA-mem:

Burrows-Wheeler Aligner maximal exact matches

C:

Capsid

E:

Envelope

FV:

Flavivirus

IGV:

Integrative Genomics Viewer

NCBI:

National Center for Biotechnology Information

prM/M:

Premembrane/membrane

SNP:

Single-nucleotide polymorphism

vcf:

Variant call format

ZIKV:

Zika virus

References

  1. Lindenbach BD, Rice CM (2003) Molecular biology of flaviviruses. Adv Virus Res 59:23–61

    Article  CAS  PubMed  Google Scholar 

  2. Ioos S et al (2014) Current Zika virus epidemiology and recent epidemics. Med Maladies Infect 44:302–307

    Article  CAS  Google Scholar 

  3. Haddow AD et al (2012) Genetic characterization of zika virus strains: geographic expansion of the Asian lineage. PLoS Negl Trop Dis 6:e1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cao-Lormeau VM et al (2016) Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387:1531–1539

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mlakar J et al (2016) Zika virus associated with microcephaly. N Engl J Med 374:951–958

    Article  CAS  PubMed  Google Scholar 

  6. Petersen E et al (2016) Rapid spread of Zika Virus in the Americas—implications for public health preparedness for mass gatherings at the 2016 Brazil Olympic Games. Int J Infect Dis 44:11–15

    Article  PubMed  Google Scholar 

  7. Cauchemez S et al (2016) Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study. Lancet 387:2125–2132

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hamel R et al (2016) Zika virus: epidemiology, clinical features and host-virus interactions. Microbes Infect 18:441–449

    Article  CAS  PubMed  Google Scholar 

  9. Merfeld E, Ben-Avi L, Kennon M, Cerveny KL (2017) Potential mechanisms of Zika-linked microcephaly. Wiley Interdiscip Rev Dev Biol. https://doi.org/10.1002/wdev.273

    Article  PubMed  PubMed Central  Google Scholar 

  10. Calvet G et al (2016) Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect Dis 16:653–660

    Article  PubMed  Google Scholar 

  11. Musso D et al (2015) Potential sexual transmission of zika virus. Emerg Infect Dis 21:359–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miner JJ et al (2016) Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 165:1081–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miner JJ, Diamond MS (2017) Zika virus pathogenesis and tissue tropism. Cell Host Microbe 21:134–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Musso D, Gubler DJ (2016) Zika virus. Clin Microbiol Rev 29:487–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lanciotti RS, Lambert AJ, Holodniy M, Saavedra S, del Carmen Castillo Signor L (2016) Phylogeny of Zika virus in western hemisphere, 2015. Emerg Infect Dis 22:933–935

    Article  PubMed  PubMed Central  Google Scholar 

  16. McGrath EL et al (2017) Differential responses of human fetal brain neural stem cells to Zika virus infection. Stem Cell Rep 8:715–727

    Article  CAS  Google Scholar 

  17. Faria NR et al (2016) Zika virus in the Americas: Early epidemiological and genetic findings. Science (80) 352:345–349

    Article  CAS  Google Scholar 

  18. Collins ND et al (2019) Inter- and intra-lineage genetic diversity of wild-type Zika viruses reveals both common and distinctive nucleotide variants and clusters of genomic diversity. Emerg Microbes Infect 8:1126–1138

    Article  PubMed  PubMed Central  Google Scholar 

  19. Agrelli A, de Moura RR, Crovella S, Brandão LAC (2019) Mutational landscape of Zika virus strains worldwide and its structural impact on proteins. Gene 708:57–62

    Article  CAS  PubMed  Google Scholar 

  20. Borucki MK et al (2019) Multiscale analysis for patterns of Zika virus genotype emergence, spread, and consequence. PLoS ONE 14:e0225699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seabra SG et al (2022) Genome-wide diversity of Zika virus: exploring spatio-temporal dynamics to guide a new nomenclature proposal. Virus Evol 8:1–15.

    Article  Google Scholar 

  22. Baud D, Gubler DJ, Schaub B, Lanteri MC, Musso D (2017) An update on Zika virus infection. Lancet 390:2099–2109

    Article  PubMed  Google Scholar 

  23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinf 5:113

    Article  Google Scholar 

  25. Rice P, Longden L, Bleasby A (2000) EMBOSS: The European Molecular Biology open software suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  26. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    Article  PubMed  PubMed Central  Google Scholar 

  27. Robinson JT, Thorvaldsdóttir H, Wenger AM, Zehir A, Mesirov JP (2017) Variant review with the integrative genomics viewer. Can Res 77:e31–e34

    Article  CAS  Google Scholar 

  28. Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wickham H et al (2019) Welcome to the Tidyverse. J Open Source Softw 4:1686

    Article  Google Scholar 

  30. Ou J, Zhu LJ (2019) trackViewer: a Bioconductor package for interactive and integrative visualization of multi-omics data. Nat Methods 16:453–454

    Article  CAS  PubMed  Google Scholar 

  31. Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43:W174–W181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang J et al (2020) Improved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci U S A 117:1496–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu J (2019) Distance-based protein folding powered by deep learning. Proc Natl Acad Sci U S A 116:16856–16865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lovell SC et al (2003) Structure validation by Cα geometry: φ, ψ and Cβ deviation. Proteins Struct Funct Genet 50:437–450

    Article  CAS  PubMed  Google Scholar 

  35. Studer G, Biasini M, Schwede T (2014) Assessing the local structural quality of transmembrane protein models using statistical potentials. Bioinformatics 30:i505–i511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33:2302–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schymkowitz J et al (2005) The FoldX web server: an online force field. Nucleic Acids Res. 33:W382–W388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khatun J, Khare SD, Dokholyan NV (2004) Can contact potentials reliably predict stability of proteins? J Mol Biol 336:1223–1238

    Article  CAS  PubMed  Google Scholar 

  39. Krieger E, Vriend G (2014) YASARA View—molecular graphics for all devices—from smartphones to workstations. Bioinformatics 30:2981–2982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yuan L et al (2017) A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science (80) 358:933–936

    Article  CAS  Google Scholar 

  41. Yoon KJ et al (2017) Zika-Virus-encoded NS2A disrupts mammalian cortical neurogenesis by degrading adherens junction proteins. Cell Stem Cell 21:349-358.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ávila-Pérez G et al (2019) A natural polymorphism in Zika virus NS2A protein responsible of virulence in mice. Sci Rep. https://doi.org/10.1038/s41598-019-56291-4

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zeng J et al (2020) The Zika virus capsid disrupts corticogenesis by suppressing dicer activity and miRNA biogenesis. Cell Stem Cell 27:618-632.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li G et al (2019) An attenuated Zika virus NS4B protein mutant is a potent inducer of antiviral immune responses. NPJ Vaccines 4:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu Y et al (2017) Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature 545:482–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xia H et al (2018) An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nat Commun. https://doi.org/10.1038/s41467-017-02816-2

    Article  PubMed  PubMed Central  Google Scholar 

  47. Regla-Nava JA et al (2022) A Zika virus mutation enhances transmission potential and confers escape from protective dengue virus immunity. Cell Rep 39:110655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Glusman G et al (2017) Mapping genetic variations to three-dimensional protein structures to enhance variant interpretation: a proposed framework. Genome Med. https://doi.org/10.1186/s13073-017-0509-y

    Article  PubMed  PubMed Central  Google Scholar 

  49. Strokach A, Corbi-Verge C, Kim PM (2019) Predicting changes in protein stability caused by mutation using sequence-and structure-based methods in a CAGI5 blind challenge. Hum Mutat 40:1414–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao B et al (2017) Structure and function of the Zika virus full-length NS5 protein. Nat Commun 8:1–9

    Article  Google Scholar 

  51. Valente AP, Moraes AH (2019) Zika virus proteins at an atomic scale: How does structural biology help us to understand and develop vaccines and drugs against Zika virus infection? J Venom Anim Toxins Incl Trop Dis. https://doi.org/10.1590/1678-9199-jvatitd-2019-0013

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dai L et al (2016) Structures of the Zika virus envelope protein and its complex with a flavivirus broadly protective antibody. Cell Host Microbe 19:696–704

    Article  CAS  PubMed  Google Scholar 

  53. Ramaiah A et al (2017) Comparative analysis of protein evolution in the genome of pre-epidemic and epidemic Zika virus. Infect Genet Evol 51:74–85

    Article  CAS  PubMed  Google Scholar 

  54. Selisko B, Papageorgiou N, Ferron F, Canard B (2018) Structural and functional basis of the fidelity of nucleotide selection by flavivirus RNA-dependent RNA polymerases. Viruses 10:59

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tan MJA et al (2020) Mutations in the cytoplasmic domain of dengue virus NS4A affect virus fitness and interactions with other non-structural proteins. J Gen Virol 101:941–953

    Article  CAS  PubMed  Google Scholar 

  56. Lin CW et al (2008) Interferon antagonist function of Japanese encephalitis virus NS4A and its interaction with DEAD-box RNA helicase DDX42. Virus Res 137:49–55

    Article  CAS  PubMed  Google Scholar 

  57. Ma J et al (2018) Zika virus non-structural protein 4A blocks the RLR-MAVS signaling. Front Microbiol. https://doi.org/10.3389/fmicb.2018.01350

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hu Y et al (2019) Zika virus antagonizes interferon response in patients and disrupts RIG-I-MAVS interaction through its CARD-TM domains. Cell Biosci. https://doi.org/10.1186/s13578-019-0308-9

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ngan NTT, Kim SJ, Lee JY, Myoung J (2019) Zika virus proteins NS2A and NS4A are major antagonists that reduce IFN-β promoter activity induced by the MDA5/RIG-I signaling pathway. J Microbiol Biotechnol 29:1665–1674

    Article  CAS  Google Scholar 

  60. Shah PS et al (2018) Comparative flavivirus-host protein interaction mapping reveals mechanisms of dengue and Zika virus pathogenesis. Cell 175:1931-1945.e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Miller S, Kastner S, Krijnse-Locker J, Bühler S, Bartenschlager R (2007) The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. J Biol Chem 282:8873–8882

    Article  CAS  PubMed  Google Scholar 

  62. Zou G et al (2009) A single-amino acid substitution in West Nile virus 2K peptide between NS4A and NS4B confers resistance to lycorine, a flavivirus inhibitor. Virology 384:242–252

    Article  CAS  PubMed  Google Scholar 

  63. Mertens E et al (2010) Viral determinants in the NS3 helicase and 2K peptide that promote West Nile virus resistance to antiviral action of 2′,5′-oligoadenylate synthetase 1b. Virology 399:176–185

    Article  CAS  PubMed  Google Scholar 

  64. Yoshii K et al (2012) A conserved region in the prM protein is a critical determinant in the assembly of flavivirus particles. J Gen Virol 93:27–38

    Article  CAS  PubMed  Google Scholar 

  65. Tan TY et al (2020) Capsid protein structure in Zika virus reveals the flavivirus assembly process. Nat Commun. https://doi.org/10.1038/s41467-020-14647-9

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jay JJ, Brouwer C (2016) Lollipops in the clinic: information dense mutation plots for precision medicine. PLoS One 11:e0160519

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rossi SL, Ebel GD, Shan C, Shi PY, Vasilakis N (2018) Did Zika virus mutate to cause severe outbreaks? Trends Microbiol 26:877–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Simonin Y, van Riel D, Van de Perre P, Rockx B, Salinas S (2017) Differential virulence between Asian and African lineages of Zika virus. PLoS Negl Trop Dis 11:e0005821

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shao Q et al (2017) The african zika virus mr-766 is more virulent and causes more severe brain damage than current asian lineage and dengue virus. Development 144:4114–4124

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Smith DR et al (2018) African and asian zika virus isolates display phenotypic differences both in vitro and in vivo. Am J Trop Med Hyg 98:432–444

    Article  CAS  PubMed  Google Scholar 

  71. Roy P, Roy S, Sengupta N (2020) Disulfide reduction allosterically destabilizes the β-ladder subdomain assembly within the NS1 dimer of ZIKV. Biophys J 119:1525–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Garg H, Mehmetoglu-Gurbuz T, Joshi A (2018) Recent advances in Zika virus vaccines. Viruses 10:631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Marina Bugnon Valdano and Santiago Leiva were supported by fellowships from CONICET and Agencia de Promoción Científica y Tecnológica, respectively. This work was supported by a research grant from the Agencia de Promoción Científica y Tecnológica (Argentina, PICT 2016-1725, PICT 2019-03050).

Author information

Authors and Affiliations

Authors

Contributions

SL planned and performed bioinformatics analysis, analysed data, and wrote the paper. MBV planned and analysed the data and wrote the paper. DG supervised the project, analysed data, and wrote the paper.

Corresponding authors

Correspondence to Marina Bugnon Valdano or Daniela Gardiol.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Handling Editor: Zhenhai Chen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leiva, S., Bugnon Valdano, M. & Gardiol, D. Unravelling the epidemiological diversity of Zika virus by analyzing key protein variations. Arch Virol 168, 115 (2023). https://doi.org/10.1007/s00705-023-05726-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05726-5

Navigation