Skip to main content
Log in

Identification of diverse papillomaviruses in captive black-and-white ruffed lemurs (Varecia variegata)

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Papillomaviruses (PVs) are host-species-specific and tissue-specific viruses that infect a diverse array of vertebrate hosts, including humans and non-human primates, with varying pathogenic outcomes. Although primate PVs have been studied extensively, no complete genome sequences of PVs from lemurs have been determined to date. Saliva samples from three critically endangered, captive black-and-white ruffed lemurs (Varecia variegata variegata) at the Duke Lemur Center (USA) were analyzed, using high-throughput sequencing, for the presence of oral papillomaviruses. We identified three PVs from two individuals, one of which had a coinfection with two different PVs. Two of the three PVs share 99.6% nucleotide sequence identity, and we have named these isolates "Varecia variegata papillomavirus 1" (VavPV1). The third PV shares ~63% nucleotide sequence identity with VavPV1, and thus, we have named it "Varecia variegata papillomavirus 2" (VavPV2). Based on their E1 + E2 + L1 protein sequence phylogeny, the VavPVs form a distinct clade. This clade likely represents a novel genus, with VavPV1 and VavPV2 belonging to two distinct species. Our findings represent the first complete genome sequences of PVs found in lemuriform primates, with their presence suggesting the potential existence of diverse PVs across the over 100 species of lemurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The sequences described in this study have been deposited in the GenBank database under accession numbers OP376964-OP376966. Raw reads have been deposited at SRA under BioProject: PRJNA874427; BioSample: SAMN30547858; SAMN30547860; SRA: SRR21284443; SRR21284444.

References

  1. Silvestre RV, de Souza AJ, Junior EC, Silva AK, de Mello WA, Nunes MR, Junior JL, Cardoso JF, de Vasconcelos JM, de Oliveira LF, da Silva SP, da Silva AM, Fries BG, Summa ME, de Sa LR (2016) First new world primate Papillomavirus identification in the Atlantic Forest, Brazil: Alouatta guariba papillomavirus 1. Genome Announc 4:e00725-e816

    Article  Google Scholar 

  2. Joh J, Hopper K, Van Doorslaer K, Sundberg JP, Jenson AB, Ghim SJ (2009) Macaca fascicularis papillomavirus type 1: a non-human primate betapapillomavirus causing rapidly progressive hand and foot papillomatosis. J Gen Virol 90:987–994

    Article  CAS  Google Scholar 

  3. Van Doorslaer K, Chen Z, Bernard HU, Chan PKS, DeSalle R, Dillner J, Forslund O, Haga T, McBride AA, Villa LL, Burk RD, Ictv Report C (2018) ICTV virus taxonomy profile: papillomaviridae. J Gen Virol 99:989–990

    Article  CAS  Google Scholar 

  4. Chen Z, Long T, Wong PY, Ho WCS, Burk RD, Chan PKS (2019) Non-human primate papillomaviruses share similar evolutionary histories and niche adaptation as the human counterparts. Front Microbiol 10:2093

    Article  Google Scholar 

  5. Buck CB, Day PM, Trus BL (2013) The papillomavirus major capsid protein L1. Virology 445:169–174

    Article  CAS  Google Scholar 

  6. Wang JW, Roden RB (2013) L2, the minor capsid protein of papillomavirus. Virology 445:175–186

    Article  CAS  Google Scholar 

  7. Middleton K, Peh W, Southern S, Griffin H, Sotlar K, Nakahara T, El-Sherif A, Morris L, Seth R, Hibma M, Jenkins D, Lambert P, Coleman N, Doorbar J (2003) Organization of human papillomavirus productive cycle during neoplastic progression provides a basis for selection of diagnostic markers. J Virol 77:10186–10201

    Article  CAS  Google Scholar 

  8. Bergvall M, Melendy T, Archambault J (2013) The E1 proteins. Virology 445:35–56

    Article  CAS  Google Scholar 

  9. McBride AA (2013) The papillomavirus E2 proteins. Virology 445:57–79

    Article  CAS  Google Scholar 

  10. Roman A, Munger K (2013) The papillomavirus E7 proteins. Virology 445:138–168

    Article  CAS  Google Scholar 

  11. Vande Pol SB, Klingelhutz AJ (2013) Papillomavirus E6 oncoproteins. Virology 445:115–137

    Article  CAS  Google Scholar 

  12. Long T, Burk RD, Chan PKS, Chen Z (2022) Non-human primate papillomavirus E6-mediated p53 degradation reveals ancient evolutionary adaptation of carcinogenic phenotype to host niche. PLoS Pathog 18:e1010444

    Article  CAS  Google Scholar 

  13. Van Doorslaer K, Li Z, Xirasagar S, Maes P, Kaminsky D, Liou D, Sun Q, Kaur R, Huyen Y, McBride AA (2017) The Papillomavirus Episteme: a major update to the papillomavirus sequence database. Nucleic Acids Res 45:D499–D506

    Article  Google Scholar 

  14. Rector A, Van Ranst M (2013) Animal papillomaviruses. Virology 445:213–223

    Article  CAS  Google Scholar 

  15. Bergin IL, Bell JD, Chen Z, Zochowski MK, Chai D, Schmidt K, Culmer DL, Aronoff DM, Patton DL, Mwenda JM, Wood CE, Burk RD (2013) Novel genital alphapapillomaviruses in baboons (Papio hamadryas Anubis) with cervical dysplasia. Vet Pathol 50:200–208

    Article  CAS  Google Scholar 

  16. Chen Z, van Doorslaer K, DeSalle R, Wood CE, Kaplan JR, Wagner JD, Burk RD (2009) Genomic diversity and interspecies host infection of alpha12 Macaca fascicularis papillomaviruses (MfPVs). Virology 393:304–310

    Article  CAS  Google Scholar 

  17. Antonsson A, Hansson BGR (2002) Healthy skin of many animal species harbors papillomaviruses which are closely related to their human counterparts. J Virol 76:12537–12542

    Article  CAS  Google Scholar 

  18. Hoffmann M, Schütze E, Bernhard A, Schlaphoff L, Kaul A, Schöniger S, Pöhlmann S (2019) Disease manifestation and viral sequences in a bonobo more than 30 years after papillomavirus infection. Pathogens 8:13

    Article  CAS  Google Scholar 

  19. D’Arc M, Moreira FRR, Dias CA, Souza AR, Seuanez HN, Soares MA, Tavares MCH, Santos AFA (2020) The characterization of two novel neotropical primate papillomaviruses supports the ancient within-species diversity model. Virus Evol 6:veaa036

    Article  Google Scholar 

  20. Barrett MA, Brown JL, Junge RE, Yoder AD (2013) Climate change, predictive modeling and lemur health: assessing impacts of changing climate on health and conservation in Madagascar. Biol Cons 157:409–422

    Article  Google Scholar 

  21. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  Google Scholar 

  22. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676

    Article  CAS  Google Scholar 

  23. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60

    Article  CAS  Google Scholar 

  24. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  25. Bushnell B (2014) BBMap: a fast, accurate, splice-aware aligner. Lawrence Berkeley National Lab (LBNL), Berkeley

  26. Tisza MJ, Belford AK, Dominguez-Huerta G, Bolduc B, Buck CB (2021) Cenote-Taker 2 democratizes virus discovery and sequence annotation. Virus Evol 7:veaa100

    Article  Google Scholar 

  27. Bernard HU, Burk RD, Chen Z, van Doorslaer K, zur Hausen H, de Villiers EM (2010) Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401:70–79

    Article  CAS  Google Scholar 

  28. Muhire BM, Varsani A, Martin DP (2014) SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE 9:e108277

    Article  Google Scholar 

  29. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  Google Scholar 

  30. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973

    Article  CAS  Google Scholar 

  31. Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165

    Article  CAS  Google Scholar 

  32. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534

    Article  CAS  Google Scholar 

  33. Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W296

    Article  CAS  Google Scholar 

  34. Willemsen A, Bravo IG (2019) Origin and evolution of papillomavirus (onco)genes and genomes. Philos Trans R Soc Lond B Biol Sci 374:20180303

    Article  Google Scholar 

Download references

Acknowledgements

We particularly thank the Duke Lemur Center (DLC) staff members was scheduled and aided in sample collection. This is DLC publication #1530.

Funding

The work described here was supported by TriCEM (Triangle Center for Evolutionary Medicine), Duke Biology, and Sigma Xi grants awarded to ENP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anne D. Yoder or Arvind Varsani.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Permits

Animal handling and sample collection protocols were approved by the Office of Animal Welfare Assurance at Duke University, USA (IACUC #A161-21-08).

Additional information

Handling Editor: Ana Cristina Bratanich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paietta, E.N., Kraberger, S., Custer, J.M. et al. Identification of diverse papillomaviruses in captive black-and-white ruffed lemurs (Varecia variegata). Arch Virol 168, 13 (2023). https://doi.org/10.1007/s00705-022-05679-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-022-05679-1

Navigation