Skip to main content

Advertisement

Log in

Identification of cryptic putative IRESs within the ORF encoding the nonstructural proteins of the human rhinovirus 16 genome

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Internal ribosome entry site (IRES)-dependent translation is a mechanism distinct from 5′ cap-dependent translation. IRES elements are located mainly in the 5′ untranslated regions (UTRs) of viral and eukaryotic mRNAs. However, IRESs are also found in the coding regions of some viral and eukaryotic genomes to initiate the translation of some functional truncated isoforms. Here, five putative IRES elements of human rhinovirus 16 (HRV16) were identified in the coding region of the nonstructural proteins P2 and P3 through fusion with green fluorescent protein (GFP) expression vectors and bicistronic vectors with a hairpin structure. These five putative IRESs were located at nucleotide positions 4286-4585, 5002-5126, 6245-6394, 6619-6718, and 6629-6778 in the HRV16 genome. The functionality of the five IRESs was confirmed by their ability to initiate GFP expression in vitro. This suggests that an alternative mechanism might be used to increase the efficiency of replication of HRV16.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Merrick WC (2004) Cap-dependent and cap-independent translation in eukaryotic systems. Gene 332:1–11. https://doi.org/10.1016/j.gene.2004.02.051

    Article  CAS  PubMed  Google Scholar 

  2. Lindeberg J, Ebendal T (1999) Use of an internal ribosome entry site for bicistronic expression of Cre recombinase or rtTA transactivator. Nucleic Acids Res 27(6):1552–1554. https://doi.org/10.1093/nar/27.6.1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ohlmann T, Jackson R (1999) The properties of chimeric picornavirus IRESes show that discrimination between internal translation initiation sites is influenced by the identity of the IRES and not just the context of the AUG codon. RNA (New York, NY) 5(6):764–778. https://doi.org/10.1017/s1355838299982158

    Article  CAS  Google Scholar 

  4. Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334(6180):320–325. https://doi.org/10.1038/334320a0

    Article  CAS  PubMed  Google Scholar 

  5. Rojas-Eisenring IA, Cajero-Juarez M, Del Angel RM (1995) Cell proteins bind to a linear polypyrimidine-rich sequence within the 5’-untranslated region of rhinovirus 14 RNA. J Virol 69(11):6819–6824

    Article  CAS  Google Scholar 

  6. Yang D, Wilson J, Anderson D, Bohunek L, Cordeiro C, Kandolf R, McManus B (1997) In vitro mutational and inhibitory analysis of the cis-acting translational elements within the 5’ untranslated region of coxsackievirus B3: potential targets for antiviral action of antisense oligomers. Virology 228(1):63–73. https://doi.org/10.1006/viro.1996.8366

    Article  CAS  PubMed  Google Scholar 

  7. Sweeney TR, Abaeva IS, Pestova TV, Hellen CU (2014) The mechanism of translation initiation on Type 1 picornavirus IRESs. EMBO J 33(1):76–92. https://doi.org/10.1002/embj.201386124

    Article  CAS  PubMed  Google Scholar 

  8. Martínez-Salas E, Francisco-Velilla R, Fernandez-Chamorro J, Lozano G, Diaz-Toledano R (2015) Picornavirus IRES elements: RNA structure and host protein interactions. Virus Res 206:62–73. https://doi.org/10.1016/j.virusres.2015.01.012

    Article  CAS  PubMed  Google Scholar 

  9. Lee KM, Chen CJ, Shih SR (2017) Regulation Mechanisms of Viral IRES-Driven Translation. Trends Microbiol 25(7):546–561. https://doi.org/10.1016/j.tim.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  10. Khawaja A, Vopalensky V, Pospisek M (2015) Understanding the potential of hepatitis C virus internal ribosome entry site domains to modulate translation initiation via their structure and function. Wiley Interdiscip Rev RNA 6(2):211–224. https://doi.org/10.1002/wrna.1268

    Article  CAS  PubMed  Google Scholar 

  11. Zhu Z, Wang Y, Yu J, Wan L, Chen J, Xiao M (2010) Classical swine fever virus NS3 is an IRES-binding protein and increases IRES-dependent translation. Virus Res 153(1):106–112. https://doi.org/10.1016/j.virusres.2010.07.013

    Article  CAS  PubMed  Google Scholar 

  12. Xiao M, Wang Y, Zhu Z, Yu J, Wan L, Chen J (2009) Influence of NS5A protein of classical swine fever virus (CSFV) on CSFV internal ribosome entry site-dependent translation. J Gen Virol 90(Pt 12):2923–2928. https://doi.org/10.1099/vir.0.014472-0

    Article  CAS  PubMed  Google Scholar 

  13. Chard LS, Kaku Y, Jones B, Nayak A, Belsham GJ (2006) Functional analyses of RNA structures shared between the internal ribosome entry sites of hepatitis C virus and the picornavirus porcine teschovirus 1 Talfan. J Virol 80(3):1271–1279. https://doi.org/10.1128/JVI.80.3.1271-1279.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chard LS, Bordeleau ME, Pelletier J, Tanaka J, Belsham GJ (2006) Hepatitis C virus-related internal ribosome entry sites are found in multiple genera of the family Picornaviridae. J Gen Virol 87(Pt 4):927–936. https://doi.org/10.1099/vir.0.81546-0

    Article  CAS  PubMed  Google Scholar 

  15. Pfingsten J, Costantino D, Kieft J (2007) Conservation and diversity among the three-dimensional folds of the Dicistroviridae intergenic region IRESes. J Mol Biol 370(5):856–869. https://doi.org/10.1016/j.jmb.2007.04.076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo XN, Song QQ, Yu J, Song J, Wang XL, Xia D, Sun P, Han J (2017) Identification of the internal ribosome entry sites (IRES) of prion protein gene. Int J Biochem Cell Biol 93:46–51. https://doi.org/10.1016/j.biocel.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  17. Graber TE, Baird SD, Kao PN, Mathews MB, Holcik M (2010) NF45 functions as an IRES trans-acting factor that is required for translation of cIAP1 during the unfolded protein response. Cell Death Differ 17(4):719–729. https://doi.org/10.1038/cdd.2009.164

    Article  CAS  PubMed  Google Scholar 

  18. Qin X, Sarnow P (2004) Preferential translation of internal ribosome entry site-containing mRNAs during the mitotic cycle in mammalian cells. J Biol Chem 279(14):13721–13728. https://doi.org/10.1074/jbc.M312854200

    Article  CAS  PubMed  Google Scholar 

  19. Song QQ, Luo XN, Chi MM, Song J, Xia D, Han J (2020) Identification of internal ribosomal entry site inside open reading frame of 14–3-3beta gene. Biomed Environ Sci BES 33(4):273–276. https://doi.org/10.3967/bes2020.037

    Article  PubMed  Google Scholar 

  20. Du X, Gomez CM (2018) Spinocerebellar [corrected] ataxia type 6: molecular mechanisms and calcium channel genetics. Adv Exp Med Biol 1049:147–173. https://doi.org/10.1007/978-3-319-71779-1_7

    Article  CAS  PubMed  Google Scholar 

  21. Dos Santos PN, Canduri F (2018) The emerging picture of CDK11: genetic, functional and medicinal aspects. Curr Med Chem 25(8):880–888. https://doi.org/10.2174/0929867324666170815102036

    Article  CAS  Google Scholar 

  22. Khan D, Katoch A, Das A, Sharathchandra A, Lal R, Roy P, Das S, Chattopadhyay S, Das S (2015) Reversible induction of translational isoforms of p53 in glucose deprivation. Cell Death Differ 22(7):1203–1218. https://doi.org/10.1038/cdd.2014.220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin JY, Chen TC, Weng KF, Chang SC, Chen LL, Shih SR (2009) Viral and host proteins involved in picornavirus life cycle. J Biomed Sci 16:103. https://doi.org/10.1186/1423-0127-16-103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fu Y, Cai J, Xi M, He Y, Zhao Y, Zheng Y, Zhang Y, Xi J, He Y (2020) Neuroprotection effect of astragaloside IV from 2-DG-induced endoplasmic reticulum stress. Oxid Med Cell Longev 2020:9782062. https://doi.org/10.1155/2020/9782062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fang DL, Wan Y, Shen W, Cao J, Sun ZX, Yu HH, Zhang Q, Cheng WH, Chen J, Ning B (2013) Endoplasmic reticulum stress leads to lipid accumulation through upregulation of SREBP-1c in normal hepatic and hepatoma cells. Mol Cell Biochem 381(1–2):127–137. https://doi.org/10.1007/s11010-013-1694-7

    Article  CAS  PubMed  Google Scholar 

  26. Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL (2008) The Vienna RNA websuite. Nucleic Acids Res 36(Web Server issue):W70–W74. https://doi.org/10.1093/nar/gkn188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ricci EP, Herbreteau CH, Decimo D, Schaupp A, Datta SA, Rein A, Darlix JL, Ohlmann T (2008) In vitro expression of the HIV-2 genomic RNA is controlled by three distinct internal ribosome entry segments that are regulated by the HIV protease and the Gag polyprotein. RNA 14(7):1443–1455. https://doi.org/10.1261/rna.813608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brasey A, Lopez-Lastra M, Ohlmann T, Beerens N, Berkhout B, Darlix JL, Sonenberg N (2003) The leader of human immunodeficiency virus type 1 genomic RNA harbors an internal ribosome entry segment that is active during the G2/M phase of the cell cycle. J Virol 77(7):3939–3949. https://doi.org/10.1128/jvi.77.7.3939-3949.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11(2):113–127. https://doi.org/10.1038/nrm2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136(4):731–745. https://doi.org/10.1016/j.cell.2009.01.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jang S, Kräusslich H, Nicklin M, Duke G, Palmenberg A, Wimmer E (1988) A segment of the 5’ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62(8):2636–2643. https://doi.org/10.1128/jvi.62.8.2636-2643.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Komar AA, Hatzoglou M (2014) Cellular IRES-mediated translation. Cell Cycle 10(2):229–240. https://doi.org/10.4161/cc.10.2.14472

    Article  CAS  Google Scholar 

  33. Weingarten-Gabbay S, Elias-Kirma S, Nir R, Gritsenko AA, Stern-Ginossar N, Yakhini Z, Weinberger A, Segal E (2016) Comparative genetics. Systematic discovery of cap-independent translation sequences in human and viral genomes. Science (New York, NY) 351(6270):4939–4953. https://doi.org/10.1126/science.aad4939

    Article  CAS  Google Scholar 

  34. Hanson PJ, Zhang HM, Hemida MG, Ye X, Qiu Y, Yang D (2012) IRES-dependent translational control during virus-induced endoplasmic reticulum stress and apoptosis. Front Microbiol 3:92. https://doi.org/10.3389/fmicb.2012.00092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jendrach M, Thiel V, Siddell S (1999) Characterization of an internal ribosome entry site within mRNA 5 of murine hepatitis virus. Adv Virol 144(5):921–933. https://doi.org/10.1007/s007050050556

    Article  CAS  Google Scholar 

  36. Cornelis S, Bruynooghe Y, Denecker G, Van Huffel S, Tinton S, Beyaert R (2000) Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol Cell 5(4):597–605. https://doi.org/10.1016/s1097-2765(00)80239-7

    Article  CAS  PubMed  Google Scholar 

  37. Wachalska M, Graul M, Praest P, Luteijn RD, Babnis AW, Wiertz E, Bienkowska-Szewczyk K, Lipinska AD (2019) Fluorescent TAP as a platform for virus-induced degradation of the antigenic peptide transporter. Cells 8(12):1590. https://doi.org/10.3390/cells8121590

    Article  CAS  PubMed Central  Google Scholar 

  38. Chou AC, Aslanian A, Sun H, Hunter T (2019) An internal ribosome entry site in the coding region of tyrosyl-DNA phosphodiesterase 2 drives alternative translation start. J Biol Chem 294(8):2665–2677. https://doi.org/10.1074/jbc.RA118.006269

    Article  CAS  PubMed  Google Scholar 

  39. Thiel V, Siddell SG (1994) Internal ribosome entry in the coding region of murine hepatitis virus mRNA 5. J Gener Virol. https://doi.org/10.1099/0022-1317-75-11-3041

    Article  Google Scholar 

  40. Wang G, Guo X, Silveyra P, Kimball SR, Floros J (2009) Cap-independent translation of human SP-A 5’-UTR variants: a double-loop structure and cis-element contribution. Am J Physiol Lung Cell Mol Physiol 296(4):L635-647. https://doi.org/10.1152/ajplung.90508.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stoneley M, Willis AE (2004) Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 23(18):3200–3207. https://doi.org/10.1038/sj.onc.1207551

    Article  CAS  PubMed  Google Scholar 

  42. Buck CB, Shen X, Egan MA, Pierson TC, Walker CM, Siliciano RF (2001) The human immunodeficiency virus type 1 gag gene encodes an internal ribosome entry site. J Virol 75(1):181–191. https://doi.org/10.1128/JVI.75.1.181-191.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Herbreteau CH, Weill L, Decimo D, Prevot D, Darlix JL, Sargueil B, Ohlmann T (2005) HIV-2 genomic RNA contains a novel type of IRES located downstream of its initiation codon. Nat Struct Mol Biol 12(11):1001–1007. https://doi.org/10.1038/nsmb1011

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by China Mega-Project for Infectious Disease [2018ZX10102001, 2018ZX10711001, 2018ZX10734401 and 2018ZX10734404], SKLID Development Grant (2011SKLID104) and Project of National Pathogen Resource Center (NPRC-32).

Author information

Authors and Affiliations

Authors

Contributions

Jun Han designed and conceived the experiments and analyzed the data; Bingtian Shi performed the experiments, analyzed data, and wrote the original draft; Qinqin Song, Xiaonuan Luo, Juan Song, Dong Xia, Zhiqiang Xia, Mi Liu, Wenjun Wang, Ruifang Wang, and Haijun Du supervised data; Jun Han revised the manuscript.

Corresponding author

Correspondence to Jun Han.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Handling Editor: Ana Cristina Bratanich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, B., Song, Q., Luo, X. et al. Identification of cryptic putative IRESs within the ORF encoding the nonstructural proteins of the human rhinovirus 16 genome. Arch Virol 166, 3373–3386 (2021). https://doi.org/10.1007/s00705-021-05209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05209-5

Navigation