Skip to main content

Advertisement

Log in

RLP, a bacteriophage of the family Podoviridae, rescues mice from bacteremia caused by multi-drug-resistant Pseudomonas aeruginosa

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Antimicrobial resistance is a serious threat to public health around the globe. According to the World Health Organization, there will be a return to the pre-penicillin era by 2050 if no new antimicrobials are discovered. It is therefore necessary to find new antimicrobials and alternatives. Pseudomonas aeruginosa exhibits resistance against many antibiotics and causes a variety of infections in immunocompromised individuals and especially in those with burn wounds and lung infections. Bacteriophage RLP against P. aeruginosa strain PA-1 was isolated from the Ravi River near Lahore. It showed marked stability at different pH values and temperatures, with the maximum storage stability at 4 °C. It demonstrated the ability to inhibit bacterial growth for up to 20 h, replicated in 25 min, and produced 154 virions per infected cell. RLP showed a broad host range, infecting 50% (19/38) of the multiple-drug-resistant (MDR) P. aeruginosa strains that were tested. The 43-kbp-long genome of RLP is a double-stranded DNA molecule that encodes 56 proteins in total: 34 with known functions, and 22 with no homolog in the gene databases. A cascade system of lytic machinery is also present in the form of four genes (R/z, R/z1, holin and endolysin). Therapeutic studies of RLP in bacteremic mice infected with P. aeruginosa strain PA-1 demonstrated a 92% survival rate in the treated group compared with 7.4% in the untreated group, and this result was statistically significant. Based on its physiological and genetic properties, ability to cause a reduction in bacterial growth in vitro and its in vivo therapeutic efficacy, RLP could be a good candidate for use in phage therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Church D, Elsayed S, Reid O, Winston B, Lindsay R (2006) Burn wound infections. Clin Microbiol Rev 19:403–434

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pier G, Ramphal R (2005) Pseudomonas aeruginosa. Princip Pract Infect Dis 6:2587–2615

    Google Scholar 

  3. McVay CS, Velásquez M, Fralick JA (2007) Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother 51:1934–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Merril CR, Scholl D, Adhya SL (2003) The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2:489

    Article  CAS  PubMed  Google Scholar 

  5. Brüssow H (2005) Phage therapy: the Escherichia coli experience. Microbiology 151:2133–2140

    Article  PubMed  CAS  Google Scholar 

  6. Barrow PA, Soothill JS (1997) Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Microbiol 5:268–271

    Article  CAS  PubMed  Google Scholar 

  7. Smith HW, Huggins M (1983) Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. Microbiology 129:2659–2675

    Article  CAS  Google Scholar 

  8. Pirisi A (2000) Phage therapy—advantages over antibiotics? Lancet 356:1418

    Article  CAS  PubMed  Google Scholar 

  9. Stone R (2002) Stalin’s forgotten cure. Science 298:728–731

    Article  CAS  PubMed  Google Scholar 

  10. Gorski A, Dabrowska K, Switala-Jeleń K, Nowaczyk M, Weber-Dabrowska B, Boratynski J, Wietrzyk J, Opolski A (2003) New insights into the possible role of bacteriophages in host defense and disease. Med Immunol 2:2

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kochetkova VA, Mamontov AS, Moskovtseva RL, Erastova EI, Trofimov EI, Popov MI, Dzhubalieva SK (1989) Phagotherapy of postoperative suppurative-inflammatory complications in patients with neoplasms. Sovetskaia meditsina (6), 23–26

  12. Sulakvelidze A, Alavidze Z, Morris JG (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yin S, Huang G, Zhang Y, Jiang B, Yang Z, Dong Z, You B, Yuan Z, Hu F, Zhao Y (2017) Phage Abp1 rescues human cells and mice from infection by pan-drug resistant Acinetobacter baumannii. Cell Physiol Biochem 44:2337–2345

    Article  CAS  PubMed  Google Scholar 

  14. Khawaja KA, Rauf M, Abbas Z (2016) A virulent phage JHP against Pseudomonas aeruginosa showed infectivity against multiple genera. J Basic Microbiol 56:1090–1097

    Article  CAS  PubMed  Google Scholar 

  15. Bibi Z, Abbas Z, Rehman Su (2016) The phage P. E1 isolated from hospital sewage reduces the growth of Escherichia coli. Biocontrol Sci Tech 26:181–188

    Article  Google Scholar 

  16. Kutter E (2009) Phage host range and efficiency of plating. Bacteriophages. Springer, Berlin, pp 141–149

    Google Scholar 

  17. Alvi IA, Asif M, Tabassum R, Abbas Z, ur Rehman S (2018) Storage of bacteriophages at 4 C leads to no loss in their titer after one year. Pakis J Zool 50:1999–2398

    Google Scholar 

  18. Ellis EL, Delbruck M (1939) The growth of bacteriophage. J Gen Physiol 22:365–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Asif M, Alvi IA, Tabassum R, Rehman SU (2020) TAC1, an unclassified bacteriophage of the family Myoviridae infecting Acinetobacter baumannii with a large burst size and a short latent period. Arch Virol 165(2):419–424

    Article  CAS  PubMed  Google Scholar 

  20. Sambrook J, Russell DW (2006) Purification of nucleic acids by extraction with phenol: chloroform. Cold Spring Harbor Protocols 2006:pdb. prot4455

  21. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75

    Article  CAS  Google Scholar 

  22. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16–W21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lavigne R, Sun W, Volckaert G (2004) PHIRE, a deterministic approach to reveal regulatory elements in bacteriophage genomes. Bioinformatics 20:629–635

    Article  CAS  PubMed  Google Scholar 

  24. Tiwari BR, Kim S, Rahman M, Kim J (2011) Antibacterial efficacy of lytic Pseudomonas bacteriophage in normal and neutropenic mice models. J Microbiol 49:994–999

    Article  CAS  PubMed  Google Scholar 

  25. Skorupski K, Pierce JC, Sauer B, Sternberg N (1992) Bacteriophage P1 genes involved in the recognition and cleavage of the phage packaging site (pac). J Mol Biol 223:977–989

    Article  CAS  PubMed  Google Scholar 

  26. Pallavali RR, Degati VL, Lomada D, Reddy MC, Durbaka VRP (2017) Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections. PLoS One 12:e0179245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Haq IU, Chaudhry WN, Andleeb S, Qadri I (2012) Isolation and partial characterization of a virulent bacteriophage IHQ1 specific for Aeromonas punctata from stream water. Microb Ecol 63:954–963

    Article  CAS  Google Scholar 

  28. Ceyssens P-J, Lavigne R, Mattheus W, Chibeu A, Hertveldt K, Mast J, Robben J, Volckaert G (2006) Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: establishment of the φKMV subgroup within the T7 supergroup. J Bacteriol 188:6924–6931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jamal M, Chaudhry WN, Hussain T, Das CR, Andleeb S (2015) Characterization of new Myoviridae bacteriophage WZ1 against multi-drug resistant (MDR) Shigella dysenteriae. J Basic Microbiol 55:420–431

    Article  CAS  PubMed  Google Scholar 

  30. Jończyk E, Kłak M, Międzybrodzki R, Górski A (2011) The influence of external factors on bacteriophages. Folia Microbiol 56:191–200

    Article  CAS  Google Scholar 

  31. Ackermann HW, Tremblay D, Moineau S (2004) Long-term bacteriophage preservation. WFCC Newslett 38:35–40

    Google Scholar 

  32. Garbe J, Wesche A, Bunk B, Kazmierczak M, Selezska K, Rohde C, Sikorski J, Rohde M, Jahn D, Schobert M (2010) Characterization of JG024, a Pseudomonas aeruginosa PB1-like broad host range phage under simulated infection conditions. BMC Microbiol 10:301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ahiwale S, Prakash D, Gajbhiye M, Jagdale S, Patil N, Kapadnis B (2012) BVPaP-3, a T7-like lytic phage of Pseudomonas aeruginosa: its isolation and characterisation. Curr Microbiol 64:305–311

    Article  CAS  PubMed  Google Scholar 

  34. Lavigne R, Burkal’tseva MV, Robben J, Sykilinda NN, Kurochkina LP, Grymonprez B, Jonckx B, Krylov VN, Mesyanzhinov VV, Volckaert G (2003) The genome of bacteriophage φKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology 312:49–59

  35. Yamaguchi K, Miyata R, Shigehisa R, Uchiyama J, Takemura-Uchiyama I, Kato S-I, Ujihara T, Sakaguchi Y, Daibata M, Matsuzaki S (2014) Genome analysis of Pseudomonas aeruginosa bacteriophage KPP23, belonging to the family Siphoviridae. Genome Announc 2:e00233–e00234

    Article  PubMed  PubMed Central  Google Scholar 

  36. Krylov V, Pleteneva E, Bourkaltseva M, Shaburova O, Volckaert G, Sykilinda N, Kurochkina L, Mesyanzhinov V (2003) Myoviridae bacteriophages of Pseudomonas aeruginosa: a long and complex evolutionary pathway. Res Microbiol 154:269–275

    Article  CAS  PubMed  Google Scholar 

  37. Alves DR, Perez-Esteban P, Kot W, Bean J, Arnot T, Hansen LH, Enright MC, Jenkins ATA (2016) A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions. Microb Biotechnol 9:61–74

    Article  CAS  PubMed  Google Scholar 

  38. Karumidze N, Thomas JA, Kvatadze N, Goderdzishvili M, Hakala KW, Weintraub ST, Alavidze Z, Hardies SC (2012) Characterization of lytic Pseudomonas aeruginosa bacteriophages via biological properties and genomic sequences. Appl Microbiol Biotechnol 94:1609–1617

    Article  CAS  PubMed  Google Scholar 

  39. Essoh C, Latino L, Midoux C, Blouin Y, Loukou G, Nguetta S-PA, Lathro S, Cablanmian A, Kouassi AK, Vergnaud G (2015) Investigation of a large collection of Pseudomonas aeruginosa bacteriophages collected from a single environmental source in Abidjan, Côte d’Ivoire. PloS One 10:e0130548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Streisinger G, Emrich J, Stahl MM (1967) Chromosome structure in phage t4, iii. Terminal redundancy and length determination. Proc Natl Acad Sci 57:292–295

    Article  CAS  PubMed  Google Scholar 

  41. Ceyssens P-J, Hertveldt K, Ackermann H-W, Noben J-P, Demeke M, Volckaert G, Lavigne R (2008) The intron-containing genome of the lytic Pseudomonas phage LUZ24 resembles the temperate phage PaP3. Virology 377:233–238

    Article  CAS  PubMed  Google Scholar 

  42. Hanych B, Kędzierska S, Walderich B, Uznański B, Taylor A (1993) Expression of the Rz gene and the overlapping Rz1 reading frame present at the right end of the bacteriophage lambda genome. Gene 129:1–8

    Article  CAS  PubMed  Google Scholar 

  43. Kȩdzierska S, Wawrzynow A, Taylor A (1996) The Rz1 gene product of bacteriophage lambda is a lipoprotein localized in the outer membrane of Escherichia coli. Gene 168:1–8

    Article  PubMed  Google Scholar 

  44. Young R, Wang N, Roof WD (2000) Phages will out: strategies of host cell lysis. Trends Microbiol 8:120–128

    Article  CAS  PubMed  Google Scholar 

  45. Berry J, Summer EJ, Struck DK, Young R (2008) The final step in the phage infection cycle: the Rz and Rz1 lysis proteins link the inner and outer membranes. Mol Microbiol 70:341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grymonprez B, Jonckx B, Krylov V, Mesyanzhinov V, Volckaert G (2003) The genome of bacteriophage phiKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology 312:4959

    Google Scholar 

  47. Cao Z, Zhang J, Niu YD, Cui N, Ma Y, Cao F, Jin L, Li Z, Xu Y (2015) Isolation and characterization of a “phiKMV-like” bacteriophage and its therapeutic effect on mink hemorrhagic pneumonia. PLoS One 10:e0116571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Payne RJ, Jansen VA (2003) Pharmacokinetic principles of bacteriophage therapy. Clin Pharmacokinet 42:315–325

    Article  CAS  PubMed  Google Scholar 

  49. Payne RJ, Jansen VA (2000) Phage therapy: the peculiar kinetics of self-replicating pharmaceuticals. Clin Pharmacol Ther 68:225–230

    Article  CAS  PubMed  Google Scholar 

  50. Uchiyama J, Maeda Y, Takemura I, Chess-Williams R, Wakiguchi H, Matsuzaki S (2009) Blood kinetics of four intraperitoneally administered therapeutic candidate bacteriophages in healthy and neutropenic mice. Microbiol Immunol 53:301–304

    Article  CAS  PubMed  Google Scholar 

  51. Schneider G, Szentes N, Horváth M, Dorn Á, Cox A, Nagy G, Dofkay Z, Maróti G, Rákhely G, Kovács T (2018) Kinetics of targeted phage rescue in a mouse model of systemic Escherichia coli K1. BioMed Res Int 2018:7569645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Henry M, Lavigne R, Debarbieux L (2013) Predicting in vivo efficacy of therapeutic bacteriophages used to treat pulmonary infections. Antimicrob Agents Chemother 57:5961–5968

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The research work was conducted as a part of the PhD research of Iqbal Ahmad Alvi. Shafiq Ur Rehman and Iqbal Ahmad Alvi designed the study; Iqbal Ahmad Alvi and Muhammad Asif performed the in vitro studies; Iqbal Ahmad Alvi, Rehan Aslam and Zaigham Abbas performed animal model studies; and Iqbal Ahmad Alvi, Muhammad Asif, Rabia Tabassum and Shafiq Ur Rehman perfomed the pharmacokinetics studies, compiled the data and prepared the manuscript.

Corresponding author

Correspondence to Shafiq ur Rehman.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: T. K. Frey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The 16S rRNA sequence of the bacterial strain (Pseudomonas aeruginosa strain PA-1) was submitted to NCBI GenBank with accession number MG763232. The whole genome sequence of bacteriophage RLP was submitted to NCBI GenBank with accession number MH979674.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 559 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvi, I.A., Asif, M., Tabassum, R. et al. RLP, a bacteriophage of the family Podoviridae, rescues mice from bacteremia caused by multi-drug-resistant Pseudomonas aeruginosa. Arch Virol 165, 1289–1297 (2020). https://doi.org/10.1007/s00705-020-04601-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04601-x

Navigation