Skip to main content

Advertisement

Log in

Oxidative stress response in the pathogenesis of dengue virus virulence, disease prognosis and therapeutics: an update

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Dengue virus (DENV) is a mosquito-borne arbovirus that causes febrile illness and can lead to a potentially lethal disease. The mechanism of disease pathogenesis is not completely understood, and there are currently no vaccines or therapeutic drugs available to protect against all four serotypes of DENV. Although many reasons have been suggested for the development of the disease, dengue studies have shown that, during DENV infection, there is an imbalance between oxidants and antioxidants that disrupts homeostasis. An increase in reactive oxygen species (ROS) levels triggers the sudden release of cytokines, which can lead to plasma leakage and other severe symptoms. In the present review, we give an overview of the oxidative stress response and its effect on the progression of dengue disease. We also discuss the role of oxidative-stress-associated molecules in disease prognostic and therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. World Health Organization (2012) Global strategy for dengue prevention and control, 2012–2020. World Health Organization, Geneva

    Google Scholar 

  2. Mustafa M, Bansal A, Rastogi V (2011) Flightless Aedes mosquitoes in dengue control. Med J Armed Forces India 67:192–193. https://doi.org/10.1016/S0377-1237(11)60035-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dwivedi VD, Tripathi IP, Tripathi RC et al (2017) Genomics, proteomics and evolution of dengue virus. Brief Funct Genom 16:217–227. https://doi.org/10.1093/bfgp/elw040

    Article  CAS  Google Scholar 

  4. Mustafa MS, Rasotgi V, Jain S, Gupta V (2015) Discovery of fifth serotype of dengue virus (DENV-5): a new public health dilemma in dengue control. Med J Armed Forces India 71:67–70. https://doi.org/10.1016/j.mjafi.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  5. Diamond MS, Pierson TC (2015) Molecular insight into dengue virus pathogenesis and its implications for disease control. Cell 162:488–492. https://doi.org/10.1016/j.cell.2015.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Halstead SB (2007) Dengue. Lancet 370:1644–1652. https://doi.org/10.1016/S0140-6736(07)61687-0

    Article  PubMed  Google Scholar 

  7. Halstead SB, Mahalingam S, Marovich MA et al (2010) Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet Infect Dis 10:712–722. https://doi.org/10.1016/S1473-3099(10)70166-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Syenina A, Jagaraj CJ, Aman SAB et al (2015) Dengue vascular leakage is augmented by mast cell degranulation mediated by immunoglobulin Fcγ receptors. Elife. https://doi.org/10.7554/eLife.05291

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dikici I, Mehmetoglu I, Dikici N et al (2005) Investigation of oxidative stress and some antioxidants in patients with acute and chronic viral hepatitis B and the effect of interferon-alpha treatment. Clin Biochem 38:1141–1144. https://doi.org/10.1016/j.clinbiochem.2005.10.006

    Article  CAS  PubMed  Google Scholar 

  10. World Health Organization (2011) Comprehensive guidelines for prevention and control of dengue and dengue haemorrhagic fever, Rev. and expanded. ed. World Health Organization Regional Office for South-East Asia, New Delhi

  11. Malavige GN, Ogg GS (2017) Pathogenesis of vascular leak in dengue virus infection. Immunology 151:261–269. https://doi.org/10.1111/imm.12748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee TH, Lee LK, Lye DC, Leo YS (2017) Current management of severe dengue infection. Expert Rev Anti Infect Ther 15:67–78. https://doi.org/10.1080/14787210.2017.1248405

    Article  CAS  PubMed  Google Scholar 

  13. Fernando S, Wijewickrama A, Gomes L et al (2016) Patterns and causes of liver involvement in acute dengue infection. BMC Infect Dis 16:319. https://doi.org/10.1186/s12879-016-1656-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. John ALS (2013) Influence of mast cells on dengue protective immunity and immune pathology. PLoS Pathog 9:e1003783. https://doi.org/10.1371/journal.ppat.1003783

    Article  CAS  Google Scholar 

  15. Brown MG, Hermann LL, Issekutz AC et al (2011) Dengue virus infection of mast cells triggers endothelial cell activation. J Virol 85:1145–1150. https://doi.org/10.1128/JVI.01630-10

    Article  CAS  PubMed  Google Scholar 

  16. Mackenzie JM, Jones MK, Young PR (1996) Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology 220:232–240. https://doi.org/10.1006/viro.1996.0307

    Article  CAS  PubMed  Google Scholar 

  17. Muller DA, Young PR (2013) The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Res 98:192–208. https://doi.org/10.1016/j.antiviral.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  18. Avirutnan P, Punyadee N, Noisakran S et al (2006) Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J Infect Dis 193:1078–1088. https://doi.org/10.1086/500949

    Article  CAS  PubMed  Google Scholar 

  19. Adikari TN, Gomes L, Wickramasinghe N et al (2016) Dengue NS1 antigen contributes to disease severity by inducing interleukin (IL)-10 by monocytes. Clin Exp Immunol 184:90–100. https://doi.org/10.1111/cei.12747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Modhiran N, Watterson D, Muller DA et al (2015) Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med 7:304ra142. https://doi.org/10.1126/scitranslmed.aaa3863

    Article  CAS  PubMed  Google Scholar 

  21. Samadanam DM, Muthuraman KR, Mariappan V et al (2019) Altered platelet fatty acids in dengue cases by gas chromatography-mass spectrometry analysis. Intervirology. https://doi.org/10.1159/000501015

    Article  PubMed  Google Scholar 

  22. Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9:2277–2293. https://doi.org/10.1089/ars.2007.1782

    Article  CAS  PubMed  Google Scholar 

  23. Reshi ML, Su Y-C, Hong J-R (2014) RNA viruses: ROS-mediated cell death. In: International journal of cell biology. https://www.hindawi.com/journals/ijcb/2014/467452/. Accessed 18 Mar 2019

  24. Sahnoun Z, Jamoussi K, Zeghal KM (1997) Free radicals and antioxidants: human physiology, pathology and therapeutic aspects. Therapie 52:251–270

    CAS  PubMed  Google Scholar 

  25. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95. https://doi.org/10.1152/physrev.00018.2001

    Article  PubMed  Google Scholar 

  26. Newsholme P, Cruzat VF, Keane KN et al (2016) Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 473:4527–4550. https://doi.org/10.1042/BCJ20160503C

    Article  CAS  PubMed  Google Scholar 

  27. He L, He T, Farrar S et al (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44:532–553. https://doi.org/10.1159/000485089

    Article  PubMed  Google Scholar 

  28. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247. https://doi.org/10.1038/35041687

    Article  CAS  PubMed  Google Scholar 

  29. Cao SS, Kaufman RJ (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 21:396–413. https://doi.org/10.1089/ars.2014.5851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ježek J, Cooper KF, Strich R (2018) Reactive oxygen species and mitochondrial dynamics: the Yin and Yang of mitochondrial dysfunction and cancer progression. Antioxidants (Basel). https://doi.org/10.3390/antiox7010013

    Article  Google Scholar 

  31. Ghezzi D, Zeviani M (2012) Assembly factors of human mitochondrial respiratory chain complexes: physiology and pathophysiology. Adv Exp Med Biol 748:65–106. https://doi.org/10.1007/978-1-4614-3573-0_4

    Article  CAS  PubMed  Google Scholar 

  32. Nagdas S, Kashatus DF (2017) The interplay between oncogenic signaling networks and mitochondrial dynamics. Antioxidants (Basel). https://doi.org/10.3390/antiox6020033

    Article  Google Scholar 

  33. Schwarz KB (1996) Oxidative stress during viral infection: a review. Free Radic Biol Med 21:641–649

    Article  CAS  PubMed  Google Scholar 

  34. Peterhans E, Grob M, Burge T, Zanoni R (1987) Virus-induced formation of reactive oxygen intermediates in phagocytic cells. Free Radic Res Commun 3:39–46. https://doi.org/10.3109/10715768709069768

    Article  CAS  PubMed  Google Scholar 

  35. What is Oxidative Stress 1 | Reactive Oxygen Species | Radical (Chemistry). In: Scribd. https://www.scribd.com/document/187878663/What-is-Oxidative-Stress-1. Accessed 18 Mar 2019

  36. El-Agamey A, Lowe GM, McGarvey DJ et al (2004) Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 430:37–48. https://doi.org/10.1016/j.abb.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  37. Masella R, Di Benedetto R, Varì R et al (2005) Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16:577–586. https://doi.org/10.1016/j.jnutbio.2005.05.013

    Article  CAS  PubMed  Google Scholar 

  38. Willcox JK, Ash SL, Catignani GL (2004) Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr 44:275–295. https://doi.org/10.1080/10408690490468489

    Article  CAS  PubMed  Google Scholar 

  39. Beck MA, Handy J, Levander OA (2000) The role of oxidative stress in viral infections. Ann N Y Acad Sci 917:906–912

    Article  CAS  PubMed  Google Scholar 

  40. Golenbock DT, Hampton RY, Qureshi N et al (1991) Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J Biol Chem 266:19490–19498

    CAS  PubMed  Google Scholar 

  41. Duygu F, Karsen H, Aksoy N, Taskin A (2012) Relationship of oxidative stress in hepatitis B infection activity with HBV DNA and fibrosis. Ann Lab Med 32:113. https://doi.org/10.3343/alm.2012.32.2.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang JW, Wang LY, Zhao ZH et al (2012) Correlationship between chemokines and oxidative stress in chronic hepatitis B. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 26:246–249

    CAS  PubMed  Google Scholar 

  43. Tasdelen Fisgin N, Aydin BK, Sarikaya H et al (2012) Oxidative stress and antioxidant defense in patients with chronic hepatitis B. Clin Lab 58:273–280

    PubMed  Google Scholar 

  44. Shohrati M, Dermanaki F, Babaei F, Alavian SM (2010) Evaluation of the effects of oral N-acetylcysteine and a placebo in paraclinical and oxidative stress parameters of patients with chronic hepatitis B. Hepat Mon 10:95–100

    PubMed  PubMed Central  Google Scholar 

  45. Seronello S, Montanez J, Presleigh K et al (2011) Ethanol and reactive species increase basal sequence heterogeneity of hepatitis C virus and produce variants with reduced susceptibility to antivirals. PLoS One. https://doi.org/10.1371/journal.pone.0027436

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chen W, Xu Y, Li H et al (2014) HCV genomic RNA activates the NLRP3 inflammasome in human myeloid cells. PLoS One. https://doi.org/10.1371/journal.pone.0084953

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ivanov AV, Smirnova OA, Petrushanko IY et al (2015) HCV core protein uses multiple mechanisms to induce oxidative stress in human hepatoma Huh7 cells. Viruses 7:2745–2770. https://doi.org/10.3390/v7062745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Berridge MJ, Bootman MD, Lipp P (1998) Calcium—a life and death signal. Nature 395:645–648. https://doi.org/10.1038/27094

    Article  CAS  PubMed  Google Scholar 

  49. Murphy AN, Bredesen DE, Cortopassi G et al (1996) Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria. Proc Natl Acad Sci USA 93:9893–9898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yen H-H, Shih K-L, Lin T-T et al (2012) Decreased mitochondrial deoxyribonucleic acid and increased oxidative damage in chronic hepatitis C. World J Gastroenterol 18:5084–5089. https://doi.org/10.3748/wjg.v18.i36.5084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Piccoli C, Quarato G, Ripoli M et al (2009) HCV infection induces mitochondrial bioenergetic unbalance: causes and effects. Biochim Biophys Acta 1787:539–546. https://doi.org/10.1016/j.bbabio.2008.11.008

    Article  CAS  PubMed  Google Scholar 

  52. Sönnerborg A (1988) Chronic HIV-infection in CNS—neurological manifestations. Acta Neurol Scand 77:77. https://doi.org/10.1111/j.1600-0404.1988.tb07987.x

    Article  Google Scholar 

  53. Salhan D, Pathak S, Husain M et al (2012) HIV gene expression deactivates redox-sensitive stress response program in mouse tubular cells both in vitro and in vivo. Am J Physiol Renal Physiol 302:F129–F140. https://doi.org/10.1152/ajprenal.00024.2011

    Article  CAS  PubMed  Google Scholar 

  54. Favier A, Sappey C, Leclerc P et al (1994) Antioxidant status and lipid peroxidation in patients infected with HIV. Chem Biol Interact 91:165–180

    Article  CAS  PubMed  Google Scholar 

  55. Musalmah M, Fairuz AH, Gapor MT, Ngah WZW (2002) Effect of vitamin E on plasma malondialdehyde, antioxidant enzyme levels and the rates of wound closures during wound healing in normal and diabetic rats. Asia Pac J Clin Nutr 11(Suppl 7):S448–S451

    Article  CAS  PubMed  Google Scholar 

  56. Aukrust P, Müller F, Svardal AM et al (2003) Disturbed glutathione metabolism and decreased antioxidant levels in human immunodeficiency virus-infected patients during highly active antiretroviral therapy—potential immunomodulatory effects of antioxidants. J Infect Dis 188:232–238. https://doi.org/10.1086/376459

    Article  CAS  PubMed  Google Scholar 

  57. Fuchs J, Emerit I, Levy A et al (1995) Clastogenic factors in plasma of HIV-1 infected patients. Free Radic Biol Med 19:843–848

    Article  CAS  PubMed  Google Scholar 

  58. De Rosa SC, Zaretsky MD, Dubs JG et al (2000) N-acetylcysteine replenishes glutathione in HIV infection. Eur J Clin Invest 30:915–929

    Article  PubMed  Google Scholar 

  59. Ivanov AV, Valuev-Elliston VT, Ivanova ON et al (2016) Oxidative stress during HIV infection: mechanisms and consequences. Oxid Med Cell Longev 2016:8910396. https://doi.org/10.1155/2016/8910396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Haughey NJ, Cutler RG, Tamara A et al (2004) Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia. Ann Neurol 55:257–267. https://doi.org/10.1002/ana.10828

    Article  CAS  PubMed  Google Scholar 

  61. Huang X, Liang H, Fan X et al (2016) Liver damage in patients with HCV/HIV coinfection is linked to HIV-related oxidative stress. Oxid Med Cell Longev. https://doi.org/10.1155/2016/8142431

    Article  PubMed  PubMed Central  Google Scholar 

  62. Baum MK, Sales S, Jayaweera DT et al (2011) Coinfection with hepatitis C virus, oxidative stress and antioxidant status in HIV-positive drug users in Miami. HIV Med 12:78–86. https://doi.org/10.1111/j.1468-1293.2010.00849.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang Y, Wang M, Li H et al (2012) Accumulation of nuclear and mitochondrial DNA damage in the frontal cortex cells of patients with HIV-associated neurocognitive disorders. Brain Res 1458:1–11. https://doi.org/10.1016/j.brainres.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  64. Mondal D, Pradhan L, Ali M, Agrawal KC (2004) HAART drugs induce oxidative stress in human endothelial cells and increase endothelial recruitment of mononuclear cells: exacerbation by inflammatory cytokines and amelioration by antioxidants. Cardiovasc Toxicol 4:287–302

    Article  CAS  PubMed  Google Scholar 

  65. Soundravally R, Hoti SL, Patil SA et al (2014) Association between proinflammatory cytokines and lipid peroxidation in patients with severe dengue disease around defervescence. Int J Infect Dis 18:68–72. https://doi.org/10.1016/j.ijid.2013.09.022

    Article  CAS  PubMed  Google Scholar 

  66. Guabiraba R, Ryffel B (2014) Dengue virus infection: current concepts in immune mechanisms and lessons from murine models. Immunology 141:143–156. https://doi.org/10.1111/imm.12188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801. https://doi.org/10.1016/j.cell.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  68. Yoneyama M, Fujita T (2009) RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev 227:54–65. https://doi.org/10.1111/j.1600-065X.2008.00727.x

    Article  CAS  PubMed  Google Scholar 

  69. Hiscott J (2007) Convergence of the NF-kappaB and IRF pathways in the regulation of the innate antiviral response. Cytokine Growth Factor Rev 18:483–490. https://doi.org/10.1016/j.cytogfr.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  70. Nasirudeen AMA, Wong HH, Thien P et al (2011) RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl Trop Dis 5:e926. https://doi.org/10.1371/journal.pntd.0000926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Olagnier D, Peri S, Steel C et al (2014) Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells. PLoS Pathog 10:e1004566. https://doi.org/10.1371/journal.ppat.1004566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yu C-Y, Hsu Y-W, Liao C-L, Lin Y-L (2006) Flavivirus infection activates the XBP1 pathway of the unfolded protein response to cope with endoplasmic reticulum stress. J Virol 80:11868–11880. https://doi.org/10.1128/JVI.00879-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chan KR, Gan ES, Chan CYY et al (2019) Metabolic perturbations and cellular stress underpin susceptibility to symptomatic live-attenuated yellow fever infection. Nat Med. https://doi.org/10.1038/s41591-019-0510-7

    Article  PubMed  PubMed Central  Google Scholar 

  74. Olagnier D, Scholte FEM, Chiang C et al (2014) Inhibition of dengue and chikungunya virus infections by RIG-I-mediated type I interferon-independent stimulation of the innate antiviral response. J Virol 88:4180–4194. https://doi.org/10.1128/JVI.03114-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen T-H, Tang P, Yang C-F et al (2011) Antioxidant defense is one of the mechanisms by which mosquito cells survive dengue 2 viral infection. Virology 410:410–417. https://doi.org/10.1016/j.virol.2010.12.013

    Article  CAS  PubMed  Google Scholar 

  76. Patramool S, Surasombatpattana P, Luplertlop N et al (2011) Proteomic analysis of an Aedes albopictus cell line infected with Dengue serotypes 1 and 3 viruses. Parasit Vectors 4:138. https://doi.org/10.1186/1756-3305-4-138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rojas M, Zhang W, Xu Z et al (2013) Requirement of NOX2 expression in both retina and bone marrow for diabetes-induced retinal vascular injury. PLoS One 8:e84357. https://doi.org/10.1371/journal.pone.0084357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lin YL, Liu CC, Chuang JI et al (2000) Involvement of oxidative stress, NF-IL-6, and RANTES expression in dengue-2-virus-infected human liver cells. Virology 276:114–126. https://doi.org/10.1006/viro.2000.0524

    Article  CAS  PubMed  Google Scholar 

  79. Rajendiran S, Lakshamanappa HS, Zachariah B, Nambiar S (2008) Desialylation of plasma proteins in severe dengue infection: possible role of oxidative stress. Am J Trop Med Hyg 79:372–377

    Article  PubMed  Google Scholar 

  80. Gil L, Martínez G, Tápanes R et al (2004) Oxidative stress in adult dengue patients. Am J Trop Med Hyg 71:652–657

    Article  CAS  PubMed  Google Scholar 

  81. Chandrasena LG, Peiris H, Kamani J et al (2014) Antioxidants in patients with dengue viral infection. Southeast Asian J Trop Med Public Health 45:1015–1022

    PubMed  Google Scholar 

  82. Hartoyo E, Thalib I, Sari CMP et al (2017) A different approach to assess oxidative stress in dengue hemorrhagic fever patients through the calculation of oxidative stress index. J Trop Life Sci 7:237–242. https://doi.org/10.11594/jtls.07.03.08

    Article  Google Scholar 

  83. Seet RCS, Lim ECH, Wilder-Smith EPV (2006) Acute transverse myelitis following dengue virus infection. J Clin Virol 35:310–312. https://doi.org/10.1016/j.jcv.2005.08.006

    Article  PubMed  Google Scholar 

  84. Kobayashi Y, Miyazawa M, Kamei A et al (2010) Ameliorative effects of mulberry (Morus alba L.) leaves on hyperlipidemia in rats fed a high-fat diet: induction of fatty acid oxidation, inhibition of lipogenesis, and suppression of oxidative stress. Biosci Biotechnol Biochem 74:2385–2395. https://doi.org/10.1271/bbb.100392

    Article  CAS  PubMed  Google Scholar 

  85. Rahman T, Hosen I, Islam MMT, Shekhar HU (2012) Oxidative stress and human health. Adv Biosci Biotechnol. https://doi.org/10.4236/abb.2012.327123

    Article  Google Scholar 

  86. Parikh SM, Mammoto T, Schultz A et al (2006) Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med 3:e46. https://doi.org/10.1371/journal.pmed.0030046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rampengan NH, Daud D, Warouw S, Ganda IJ (2015) Serum angiopoietin-2 as marker of plasma leakage in dengue viral infection. Am J Clin Exp Med 3:39. https://doi.org/10.11648/j.ajcem.20150301.15

    Article  CAS  Google Scholar 

  88. Orozco RC, Pinzón-Redondo HS, Alvis-Guzmán NR (2015) Oxidative-nitrosative stress and dengue disease: a systematic review of in vivo/in vitro studies. Revista Cubana de Medicina Tropical 67(2):244–263

    Google Scholar 

  89. Castro R, Pinzón HS, Alvis-Guzman N (2015) A systematic review of observational studies on oxidative/nitrosative stress involvement in dengue pathogenesis. Colomb Med (Cali) 46:135–143

    Google Scholar 

  90. Soundravally R, Sankar P, Hoti SL et al (2008) Oxidative stress induced changes in plasma protein can be a predictor of imminent severe dengue infection. Acta Trop 106:156–161. https://doi.org/10.1016/j.actatropica.2008.03.001

    Article  CAS  PubMed  Google Scholar 

  91. Srikiatkhachorn A, Green S (2010) Markers of dengue disease severity. Curr Top Microbiol Immunol 338:67–82. https://doi.org/10.1007/978-3-642-02215-9_6

    Article  CAS  PubMed  Google Scholar 

  92. Robinson M, Sweeney TE, Barouch-Bentov R et al (2019) A 20-gene set predictive of progression to severe dengue. Cell Rep 26:1104.e4–1111.e4. https://doi.org/10.1016/j.celrep.2019.01.033

    Article  CAS  Google Scholar 

  93. Soundravally R, Sankar P, Bobby Z, Hoti SL (2008) Oxidative stress in severe dengue viral infection: association of thrombocytopenia with lipid peroxidation. Platelets 19:447–454. https://doi.org/10.1080/09537100802155284

    Article  CAS  PubMed  Google Scholar 

  94. Cherupanakkal C, Samadanam DM, Muthuraman KR et al (2018) Lipid peroxidation, DNA damage, and apoptosis in dengue fever. IUBMB Life 70:1133–1143. https://doi.org/10.1002/iub.1925

    Article  CAS  PubMed  Google Scholar 

  95. Fernando N, Wickremesinghe S, Niloofa R et al (2016) Protein carbonyl as a biomarker of oxidative stress in severe leptospirosis, and its usefulness in differentiating leptospirosis from dengue infections. PLoS One 11:e0156085. https://doi.org/10.1371/journal.pone.0156085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Seet RC, Lee CY, Lim EC et al (2009) Oxidative damage in dengue fever. Free Radic Biol Med 47:375–380. https://doi.org/10.1016/j.freeradbiomed.2009.04.035

    Article  CAS  PubMed  Google Scholar 

  97. Bozza FA, Cruz OG, Zagne SMO et al (2008) Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity. BMC Infect Dis 8:86. https://doi.org/10.1186/1471-2334-8-86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Durán A, Carrero R, Parra B et al (2015) Association of lipid profile alterations with severe forms of dengue in humans. Arch Virol 160:1687–1692. https://doi.org/10.1007/s00705-015-2433-z

    Article  CAS  PubMed  Google Scholar 

  99. Soundravally R, Agieshkumar B, Daisy M et al (2015) Ferritin levels predict severe dengue. Infection 43:13–19. https://doi.org/10.1007/s15010-014-0683-4

    Article  CAS  PubMed  Google Scholar 

  100. Soundravally R, Sherin J, Agieshkumar BP et al (2015) Serum levels of copper and iron in dengue fever. Rev Inst Med Trop Sao Paulo 57:315–320. https://doi.org/10.1590/S0036-46652015000400007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sg SS, Pillai AB, Ramachandrappa VS et al (2017) Increased serum levels of macrophage activation marker sCD163 in Dengue patients. J Clin Virol 86:62–67. https://doi.org/10.1016/j.jcv.2016.10.009

    Article  CAS  Google Scholar 

  102. Cui L, Pang J, Lee YH et al (2018) Serum metabolome changes in adult patients with severe dengue in the critical and recovery phases of dengue infection. PLoS Negl Trop Dis 12:e0006217. https://doi.org/10.1371/journal.pntd.0006217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cherupanakkal C, Ramachadrappa V, Kadhiravan T et al (2017) Differential expression of NADPH oxidase-2 (Nox-2) and nuclear factor-erythroid 2-related factor 2 (Nrf2) transcripts in peripheral blood mononuclear cells isolated from dengue patients. Virusdisease 28:54–60. https://doi.org/10.1007/s13337-017-0365-9

    Article  PubMed  PubMed Central  Google Scholar 

  104. Cherupanakkal C, Ramachadrappa V, Kadhiravan T et al (2017) A study on gene expression profile of endogenous antioxidant enzymes: CAT, MnSOD and GPx in dengue patients. Indian J Clin Biochem 32:437–445. https://doi.org/10.1007/s12291-017-0633-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Muhie S, Campbell R, Gautam A et al (2019) Molecular alterations induced by Yersinia pestis, dengue virus and Staphylococcal enterotoxin B under severe stress. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2019.05.022

    Article  PubMed  Google Scholar 

  106. Camini FC, da Silva Caetano CC, Almeida LT, de Brito Magalhães CL (2017) Implications of oxidative stress on viral pathogenesis. Arch Virol 162:907–917. https://doi.org/10.1007/s00705-016-3187-y

    Article  CAS  PubMed  Google Scholar 

  107. Alavian SM, Showraki A (2016) Hepatitis B and its relationship with oxidative stress. Hepat Mon. https://doi.org/10.5812/hepatmon.37973

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wang J, Chen Y, Gao N et al (2013) Inhibitory effect of glutathione on oxidative liver injury induced by dengue virus serotype 2 infections in mice. PLoS One 8:e55407. https://doi.org/10.1371/journal.pone.0055407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Escalera-Cueto M, Medina-Martínez I, del Angel RM et al (2015) Let-7c overexpression inhibits dengue virus replication in human hepatoma Huh-7 cells. Virus Res 196:105–112. https://doi.org/10.1016/j.virusres.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  110. Chaturvedi UC, Nagar R (2008) Dengue and dengue haemorrhagic fever: Indian perspective. J Biosci 33:429–441

    Article  CAS  PubMed  Google Scholar 

  111. Lee K-S, Lo S, Tan SS-Y et al (2012) Dengue virus surveillance in Singapore reveals high viral diversity through multiple introductions and in situ evolution. Infect Genet Evol 12:77–85. https://doi.org/10.1016/j.meegid.2011.10.012

    Article  PubMed  Google Scholar 

  112. Fleischauer AT, Arab L (2001) Garlic and cancer: a critical review of the epidemiologic literature. J Nutr 131:1032S–1040S. https://doi.org/10.1093/jn/131.3.1032S

    Article  CAS  PubMed  Google Scholar 

  113. Shukla Y, Kalra N (2007) Cancer chemoprevention with garlic and its constituents. Cancer Lett 247:167–181. https://doi.org/10.1016/j.canlet.2006.05.009

    Article  CAS  PubMed  Google Scholar 

  114. Hall A, Troupin A, Londono-Renteria B, Colpitts TM (2017) Garlic organosulfur compounds reduce inflammation and oxidative stress during dengue virus infection. Viruses. https://doi.org/10.3390/v9070159

    Article  PubMed  PubMed Central  Google Scholar 

  115. Chinnappan S, Ramachandrappa VS, Tamilarasu K et al (2016) Inhibition of platelet aggregation by the leaf extract of carica papaya during dengue infection: an in vitro study. Viral Immunol 29:164–168. https://doi.org/10.1089/vim.2015.0083

    Article  CAS  PubMed  Google Scholar 

  116. Raekiansyah M, Buerano CC, Luz MAD, Morita K (2018) Inhibitory effect of the green tea molecule EGCG against dengue virus infection. Arch Virol 163:1649–1655. https://doi.org/10.1007/s00705-018-3769-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors

Funding

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agieshkumar Balakrishna Pillai.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Ethical approval

Not required

Additional information

Handling Editor: Tim Skern.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillai, A.B., Muthuraman, K.R., Mariappan, V. et al. Oxidative stress response in the pathogenesis of dengue virus virulence, disease prognosis and therapeutics: an update. Arch Virol 164, 2895–2908 (2019). https://doi.org/10.1007/s00705-019-04406-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04406-7

Navigation