Skip to main content

Advertisement

Log in

Viral shedding and clinical status of feline-norovirus-infected cats after reinfection with the same strain

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Norovirus (NoV) infection is the most common cause of acute gastroenteritis in humans of all ages worldwide. When cats are experimentally infected with feline norovirus (FNoV), they develop symptoms of acute gastroenteritis. Therefore, FNoV infection may serve as an animal model for the disease caused by human norovirus infection. In this study, we examined whether FNoV of cats infected with genogroup GVI are protected from reinfection with the same strain. The blood anti-FNoV IgG level was inversely correlated with the viral load in stool samples and the clinical score of FNoV-infected cats, but complete prevention of reinfection was not observed. These findings were similar to the results of a reinfection experiment with NoV in human volunteers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bailey D, Thackray LB, Goodfellow IG (2008) A single amino acid substitution in the murine norovirus capsid protein is sufficient for attenuation in vivo. J Virol 82(15):7725–7728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Bodnar L, Lorusso E, Di Martino B, Catella C, Lanave G, Elia G, Banyai K, Buonavoglia C, Martella V (2017) Identification of a novel canine norovirus. Infect Genet Evol 52:75–81

    Article  PubMed  CAS  Google Scholar 

  3. Bok K, Abente EJ, Realpe-Quintero M, Mitra T, Sosnovtsev SV, Kapikian AZ, Green KY (2009) Evolutionary dynamics of GII. 4 noroviruses over a 34-year period. J Virol 83(22):11890–11901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bok K, Parra GI, Mitra T, Abente E, Shaver CK, Boon D, Engle R, Yu C, Kapikian AZ, Sosnovtsev SV, Purcell RH, Purcell RH (2011) Chimpanzees as an animal model for human norovirus infection and vaccine development. Proc Natl Acad Sci USA 108(1):325–330

    Article  PubMed  Google Scholar 

  5. de Graaf M, van Beek J, Koopmans MP (2016) Human norovirus transmission and evolution in a changing world. Nat Rev Microbiol 14(7):421–433

    Article  PubMed  CAS  Google Scholar 

  6. de Graaf M, Villabruna N, Koopmans MP (2017) Capturing norovirus transmission. Curr Opin Virol 22:64–70

    Article  PubMed  Google Scholar 

  7. Di Martino B, Di Profio F, Melegari I, Sarchese V, Cafiero MA, Robetto S, Aste G, Lanave G, Marsillo F, Martella V (2016) A novel feline norovirus in diarrheic cats. Infect Genet Evol 38:132–137

    Article  PubMed  CAS  Google Scholar 

  8. Di Martino B, Di Profio F, Melegari I, Sarchese V, Massirio I, Palermo G, Romito G, Lorusso E, Lanave G, Bodnar L, Buonavoglia C, Marsillo F, Green KY, Martella V (2017) Seroprevalence for norovirus genogroup II, IV and VI in dogs. Vet Microbiol 203:68–72

    Article  PubMed  Google Scholar 

  9. Foley J, Hurley K, Pesavento PA, Poland A, Pedersen NC (2006) Virulent systemic feline calicivirus infection: local cytokine modulation and contribution of viral mutants. J Feline Med Surg 8(1):55–61

    Article  PubMed  Google Scholar 

  10. Glass RI, Parashar UD, Estes MK (2009) Norovirus gastroenteritis. N Engl J Med 361(18):1776–1785

    Article  PubMed  CAS  Google Scholar 

  11. Johnson PC, Mathewson JJ, DuPont HL, Greenberg HB (1990) Multiple-challenge study of host susceptibility to Norwalk gastroenteritis in US adults. J Infect Dis 161(1):18–21

    Article  PubMed  CAS  Google Scholar 

  12. Karst SM, Wobus CE, Goodfellow IG, Green KY, Virgin HW (2014) Advances in norovirus biology. Cell Host Microbe 15(6):668–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kniel KE (2014) The makings of a good human norovirus surrogate. Curr Opin Virol 4:85–90

    Article  PubMed  Google Scholar 

  14. Koopmans M, Duizer E (2004) Foodborne viruses: an emerging problem. Int J Food Microb 90(1):23–41

    Article  Google Scholar 

  15. Liu G, Kahan SM, Jia Y, Karst SM (2009) Primary high-dose murine norovirus 1 infection fails to protect from secondary challenge with homologous virus. J Virol 83(13):6963–6968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Malm M, Uusi-Kerttula H, Vesikari T, Blazevic V (2014) High serum levels of norovirus genotype-specific blocking antibodies correlate with protection from infection in children. J Infect Dis 210(11):1755–1762

    Article  PubMed  CAS  Google Scholar 

  17. Patel MM, Widdowson MA, Glass RI, Akazawa K, Vinjé J, Parashar UD (2008) Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg Infect Dis 14(8):1224

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pinto P, Wang Q, Chen N, Dubovi EJ, Daniels JB, Millward LM, Buonavoglia C, Martella V, Saif LJ (2012) Discovery and genomic characterization of noroviruses from a gastroenteritis outbreak in domestic cats in the US. PLoS One 7(2):e32739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Phillips G, Lopman B, Tam CC, Iturriza-Gomara M, Brown D, Gray J (2009) Diagnosing norovirus-associated infectious intestinal disease using viral load. BMC Infect Dis 9(1):63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Rocha-Pereira J, Kolawole AO, Verbeken E, Wobus CE, Neyts J (2016) Post-exposure antiviral treatment of norovirus infections effectively protects against diarrhea and reduces virus shedding in the stool in a mortality mouse model. Antivir Res 132:76–84

    Article  PubMed  CAS  Google Scholar 

  21. Rocha-Pereira J, Neyts J, Jochmans D (2014) Norovirus: targets and tools in antiviral drug discovery. Biochem Pharmacol 91(1):1–11

    Article  PubMed  CAS  Google Scholar 

  22. Rong S, Slade D, Floyd-Hawkins K, Wheeler D (2006) Characterization of a highly virulent feline calicivirus and attenuation of this virus. Virus Res 122(1):95–108

    Article  PubMed  CAS  Google Scholar 

  23. Singh BK, Glatt S, Ferrer JL, Koromyslova AD, Leuthold MM, Dunder J, Hansman GS (2015) Structural analysis of a feline norovirus protruding domain. Virology 474:181–185

    Article  PubMed  CAS  Google Scholar 

  24. Takanashi S, Hashira S, Matsunaga T, Yoshida A, Shiota T, Tung PG, Khamrin P, Okitsu S, Mizuguchi M, Igarashi T, Ushijima H (2009) Detection, genetic characterization, and quantification of norovirus RNA from sera of children with gastroenteritis. J Clin Virol 44(2):161–163

    Article  PubMed  CAS  Google Scholar 

  25. Takano T, Kusuhara H, Kuroishi A, Takashina M, Doki T, Nishinaka T, Hohdatsu T (2015) Molecular characterization and pathogenicity of a genogroup GVI feline norovirus. Vet Microbiol 178(3):201–207

    Article  PubMed  CAS  Google Scholar 

  26. Takano T, Takadate Y, Doki T, Hohdatsu T (2016) Genetic characterization of feline bocavirus detected in cats in Japan. Arch Virol 161(10):2825–2828

    Article  PubMed  CAS  Google Scholar 

  27. Zhou YH, Purcell RH, Emerson SU (2004) An ELISA for putative neutralizing antibodies to hepatitis E virus detects antibodies to genotypes 1, 2, 3, and 4. Vaccine 22(20):2578–2585

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was in part funded by JSPS KAKENHI Grant number JP16K08027, and Kitasato University Research Grant for Young Researchers (2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Hohdatsu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All applicable national and institutional guidelines for the care and use of animals were followed. The animal experimentation protocol was approved by the President of Kitasato University through the judgment of the Institutional Animal Care and Use Committee of Kitasato University (Approval nos. 16-087 and 17-032). Specific-pathogen-free (SPF) cats were maintained in a temperature-controlled isolation facility. Sample sizes were determined based on our experience with FNoV infection models, and the minimum number of cats was used.

Additional information

Handling Editor: Sheela Ramamoorthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takano, T., Hiramatsu, K., Matsuyama, M. et al. Viral shedding and clinical status of feline-norovirus-infected cats after reinfection with the same strain. Arch Virol 163, 1503–1510 (2018). https://doi.org/10.1007/s00705-018-3770-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-3770-5

Navigation