Skip to main content

Advertisement

Log in

First isolation and genetic characteristics of porcine sapeloviruses in Hunan, China

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Outbreaks of diarrhea in piglets cause serious economic consequences in China. Diarrhetic fecal samples from 20 Hunan farm piglets were tested and found to be positive for porcine epidemic diarrhea virus (PEDV) by RT-PCR, although incubation with porcine kidney (PK-15) cells failed to produce infectious PEDV. Four porcine sapelovirus (PSV) strains (designated as PSV-HuNs) were isolated from four of the samples. Genomic sequence analysis revealed open reading frames encoding polyproteins of 2,331 (HuN1, 2 and 3) and 2,332 (HuN4) amino acids. Homology comparisons of the VP1 gene of the four Hunan strains with previously reported PSV strains revealed nucleotide sequence identities ranging from 74.2 to 98.6%, and deduced amino acid sequence identities from 79.5 to 98%. Phylogenetic analyses based on full-length and partial VP1 gene sequences showed that 3 of the PSV-HuN strains (HuN2, 3 and 4) clustered within a clade distinct from HuN1 as well as from all PSVs previously isolated in China, thereby showing that genetic diversity exists within Chinese PSVs. In addition, recombination analysis among PSVs indicates that a recombinant (HuN2 strain) exist in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. ICTV (2015) International Committee on Taxonomy of Viruses. http://ictvonline.org/virusTaxonomy.asp. Accessed 11 Oct 2016

  2. Chen J, Chen F, Zhou Q, Li W, Song Y, Pan Y, Zhang X, Xue C, Bi Y, Cao Y (2012) Complete genome sequence of a novel porcine Sapelovirus strain YC2011 isolated from piglets with diarrhea. J Virol 86:10898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Son K, Kim D, Kwon J, Choi J, Kang M, Belsham GJ, Cho K (2014) Full-length genomic analysis of Korean porcine sapelovirus strains. PLoS One 9:e107860

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lan D, Ji W, Yang S, Cui L, Yang Z, Yuan C, Hua X (2011) Isolation and characterization of the first Chinese porcine sapelovirus strain. Arch Virol 156:1567–1574

    Article  CAS  PubMed  Google Scholar 

  5. Schock A, Gurrala R, Fuller H, Foyle L, Dauber M, Martelli F, Scholes S, Roberts L, Steinbach F, Dastjerdi A (2014) Investigation into an outbreak of encephalomyelitis caused by a neuroinvasive porcine sapelovirus in the United Kingdom. Vet Microbiol 172:381–389

    Article  PubMed  Google Scholar 

  6. Abe M, Ito N, Sakai K, Kaku Y, Oba M, Nishimura M, Kurane I, Saijo M, Morikawa S, Sugiyama M (2011) A novel sapelovirus-like virus isolation from wild boar. Virus Genes 43:243–248

    Article  CAS  PubMed  Google Scholar 

  7. Donin DG, de Arruda Leme R, Alfieri AF, Alberton GC, Alfieri AA (2014) First report of Porcine teschovirus (PTV), Porcine sapelovirus (PSV) and Enterovirus G (EV-G) in pig herds of Brazil. Trop Anim Health Prod 46:523–528

    Article  PubMed  Google Scholar 

  8. Prodělalová J (2012) The survey of porcine teschoviruses, sapeloviruses and enteroviruses B infecting domestic pigs and wild boars in the Czech Republic between 2005 and 2011. Infect Genet Evol 12:1447–1451

    Article  PubMed  Google Scholar 

  9. Son K, Kim D, Matthijnssens J, Kwon H, Park J, Hosmillo M, Alfajaro MM, Ryu E, Kim J, Kang M (2014) Molecular epidemiology of Korean porcine sapeloviruses. Arch Virol 159:1175–1180

    Article  CAS  PubMed  Google Scholar 

  10. Chen J, Chen F, Zhou Q, Li W, Chen Y, Song Y, Zhang X, Xue C, Bi Y, Cao Y (2014) Development of a minor groove binder assay for real-time PCR detection of porcine Sapelovirus. J Virol Methods 198:69–74

    Article  CAS  PubMed  Google Scholar 

  11. Johns MB, Paulus-Thomas JE (1989) Purification of human genomic DNA from whole blood using proteinase K treatment followed by phenol–chloroform extraction. Anal Biochem 180:276–278

    Article  CAS  PubMed  Google Scholar 

  12. Yu K, Pauls KP (1992) Optimization of the PCR program for RAPD analysis. Nucleic Acids Res 20:2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht H, Johnson JE, Kamer G, Luo M, Mosser AG (1985) Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317:145

    Article  CAS  PubMed  Google Scholar 

  14. Mateu MG (1995) Antibody recognition of picornaviruses and escape from neutralization: a structural view. Virus Res 38:1–24

    Article  CAS  PubMed  Google Scholar 

  15. Minor PD (1990) Antigenic structure of picornaviruses. picornaviruses. Springer, Berlin, pp 121–154

    Chapter  Google Scholar 

  16. Oberste MS, Maher K, Kilpatrick DR, Pallansch MA (1999) Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol 73:1941–1948

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sozzi E, Barbieri I, Lavazza A, Lelli D, Moreno A, Canelli E, Bugnetti M, Cordioli P (2010) Molecular characterization and phylogenetic analysis of VP1 of porcine enteric picornaviruses isolates in Italy. Transbound Emerg Dis 57:434–442

    Article  CAS  PubMed  Google Scholar 

  18. Allen DJ, Gray JJ, Gallimore CI, Xerry J, Iturriza-Gómara M (2008) Analysis of amino acid variation in the P2 domain of the GII-4 norovirus VP1 protein reveals putative variant-specific epitopes. PLoS One 3:e1485

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gao J, Chen J, Si X, Xie Z, Zhu Y, Zhang X, Wang S, Jiang S (2012) Genetic variation of the VP1 gene of the virulent duck hepatitis A virus type 1 (DHAV-1) isolates in Shandong province of China. Virol Sin 27:248–253

    Article  CAS  PubMed  Google Scholar 

  20. Haydon D, Lea S, Fry L, Knowles N, Samuel AR, Stuart D, Woolhouse ME (1998) Characterizing sequence variation in the VP1 capsid proteins of foot and mouth disease virus (serotype 0) with respect to virion structure. J Mol Evol 46:465–475

    Article  CAS  PubMed  Google Scholar 

  21. Kottaridi C, Bolanaki E, Mamuris Z, Stathopoulos C, Markoulatos P (2006) Molecular phylogeny of VP1, 2A, and 2B genes of echovirus isolates: epidemiological linkage and observations on genetic variation. Arch Virol 151:1117–1132

    Article  CAS  PubMed  Google Scholar 

  22. Weddell GN, Yansura DG, Dowbenko DJ, Hoatlin ME, Grubman MJ, Moore DM, Kleid DG (1985) Sequence variation in the gene for the immunogenic capsid protein VP1 of foot-and-mouth disease virus type A. Proc Natl Acad Sci 82:2618–2622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Foo DGW, Alonso S, Phoon MC, Ramachandran NP, Chow VTK, Poh CL (2007) Identification of neutralizing linear epitopes from the VP1 capsid protein of Enterovirus 71 using synthetic peptides. Virus Res 125:61–68

    Article  CAS  PubMed  Google Scholar 

  24. Horsington JJ, Gilkerson JR, Hartley CA (2012) Mapping B-cell epitopes in equine rhinitis B viruses and identification of a neutralising site in the VP1 C-terminus. Vet Microbiol 155:128–136

    Article  CAS  PubMed  Google Scholar 

  25. Inoue A, Choe Y, Kim BS (1994) Analysis of antibody responses to predominant linear epitopes of Theiler’s murine encephalomyelitis virus. J Virol 68:3324–3333

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kriegshäuser G, Wutz G, Lea S, Stuart D, Skern T, Kuechler E (2003) Model of the equine rhinitis A virus capsid: identification of a major neutralizing immunogenic site. J Gen Virol 84:2365–2373

    Article  PubMed  Google Scholar 

  27. Pulli T, Roivainen M, Hovi T, Hyypi T (1998) Induction of neutralizing antibodies by synthetic peptides representing the C terminus of coxsackievirus A9 capsid protein VP1. J Gen Virol 79:2249–2253

    Article  CAS  PubMed  Google Scholar 

  28. Xie QC, McCahon D, Crowther JR, Belsham GJ, McCullough KC (1987) Neutralization of foot-and-mouth disease virus can be mediated through any of at least three separate antigenic sites. J Gen Virol 68:1637–1647

    Article  CAS  PubMed  Google Scholar 

  29. Cano-Gómez C, García-Casado MA, Soriguer R, Palero F, Jiménez-Clavero MA (2013) Teschoviruses and sapeloviruses in faecal samples from wild boar in Spain. Vet Microbiol 165:115–122

    Article  PubMed  Google Scholar 

  30. Donin DG, Leme RDA, Alfieri AF, Alberton GC, Alfieri AA (2015) Molecular survey of porcine teschovirus, porcine sapelovirus, and enterovirus G in captive wild boars (Sus scrofa scrofa) of Paraná state, Brazil. Pesquisa Vet Brasil 35:403–408

    Article  Google Scholar 

  31. Oka T, Saif LJ, Marthaler D, Esseili MA, Meulia T, Lin C, Vlasova AN, Jung K, Zhang Y, Wang Q (2014) Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene. Vet Microbiol 173:258–269

    Article  PubMed  Google Scholar 

  32. Shibata I, Tsuda T, Mori M, Ono M, Sueyoshi M, Uruno K (2000) Isolation of porcine epidemic diarrhea virus in porcine cell cultures and experimental infection of pigs of different ages. Vet Microbiol 72:173–182

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thanks Dr. JB Campbell for the helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinglong Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2017_3264_MOESM1_ESM.pdf

Supplementary Fig. 1 Phylogenetic trees based on VP4 gene sequence (a), VP2 gene sequence (b), VP3 gene sequence (c), 2A gene sequences (d), 2B gene sequences (e), 2C gene sequences (f), 3A gene sequences (g), 3B gene sequences (h), 3C gene sequences (i) and 3D gene sequences (j) of 12 PSV strains. These trees was constructed using the neighbor-joining method with 1,000 bootstrap replicates, using MEGA version 5.1 with pairwise distance. The scale bar indicates nucleotide substitution per site. Simian sapelovirus and avian sapelovirus were used as the outgroups (PDF 72 kb)

Supplementary material 2 (PDF 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Li, R., Peng, W. et al. First isolation and genetic characteristics of porcine sapeloviruses in Hunan, China. Arch Virol 162, 1589–1597 (2017). https://doi.org/10.1007/s00705-017-3264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3264-x

Keywords

Navigation