Skip to main content

Advertisement

Log in

Molecular evidence of Orthopoxvirus DNA in capybara (Hydrochoerus hydrochaeris) stool samples

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Vaccinia virus (VACV) is responsible for outbreaks in Brazil and has immense potential as an emerging virus. VACV can be found naturally circulating in India, Pakistan and South America, where it causes infections characterised by exanthematic lesions in buffaloes, cattle and humans. The transmission cycle of Brazilian VACV has still not been fully characterised; one of the most important gaps in knowledge being the role of wild animals. Capybaras, which are restricted to the Americas, are the world’s largest rodents and have peculiar characteristics that make them possible candidates for being part of a natural VACV reservoir. Here, we developed a method for detecting orthopoxvirus DNA in capybara stool samples, and have described for the first time the detection of orthopoxvirus DNA in capybaras samples from three different regions in Brazil. These findings strongly suggest that capybaras might be involved in the natural transmission cycle of VACV and furthermore represent a public health problem, when associated with Brazilian bovine vaccinia outbreaks. This makes infected animals an important factor to be considered when predicting and managing Brazilian VACV outbreaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moss B (2007) Poxviridae: The viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 2905–2946

    Google Scholar 

  2. Abrahão JS, Guedes MI, Trindade GS, Fonseca FG, Campos RK, Mota BF, Lobato ZI, Silva-Fernandes AT, Rodrigues GO, Lima LS, Ferreira PC, Bonjardim CA, Kroon EG (2009) One more piece in the VACV ecological puzzle: could peridomestic rodents be the link between wildlife and bovine vaccinia outbreaks in Brazil? PLoS One 4:e7428

    Article  PubMed  PubMed Central  Google Scholar 

  3. Abrahão JS, Silva-Fernandes AT, Lima LS, Campos RK, Guedes MI, Cota MM, Assis FL, Borges IA, Souza-Júnior MF, Lobato ZI, Bonjardim CA, Ferreira PC, Trindade GS, Kroon EG (2010) Vaccinia virus infection in monkeys, Brazilian Amazon. Emerg Infect Dis 16:976–979

    Article  PubMed  PubMed Central  Google Scholar 

  4. Peres MG, Bacchiega TS, Appolinário CM, Vicente AF, Allendorf SD, Antunes JM, Moreira SA, Legatti E, Fonseca CR, Pituco EM, Okuda LH, Pantoja JC, Ferreira F, Megid J (2013) Serological study of vaccinia virus reservoirs in areas with and without official reports of outbreaks in cattle and humans in São Paulo, Brazil. Arch Virol 158:2433–2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Damon IK (2007) Poxviruses. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 2947–2976

    Google Scholar 

  6. Essbauer S, Pfeffer M, Meyer H (2010) Zoonotic poxviruses. Vet Microbiol 140:229–236

    Article  PubMed  Google Scholar 

  7. Damaso CR, Esposito JJ, Condit RC, Moussatché N (2000) An emergent poxvirus from humans and cattle in Rio de Janeiro State: Cantagalo virus may derive from Brazilian smallpox vaccine. Virology 277:439–449

    Article  CAS  PubMed  Google Scholar 

  8. Bhanuprakash V, Venkatesan G, Balamurugan V, Hosamani M, Yogisharadhya R, Gandhale P, Reddy KV, Damle AS, Kher HN, Chandel BS, Chauhan HC, Singh RK (2010) Zoonotic infections of buffalopox in India. Zoonoses Public Health 57:e149–e155

    Article  CAS  PubMed  Google Scholar 

  9. Franco-Luiz AP, Fagundes-Pereira A, Costa GB, Alves PA, Oliveira DB, Bonjardim CA, Ferreira PC, GeS Trindade, Panei CJ, Galosi CM, Abrahão JS, Kroon EG (2014) Spread of vaccinia virus to cattle herds, Argentina, 2011. Emerg Infect Dis 20:1576–1578

    Article  PubMed  PubMed Central  Google Scholar 

  10. Trindade GS, Emerson GL, Carroll DS, Kroon EG, Damon IK (2007) Brazilian vaccinia viruses and their origins. Emerg Infect Dis 13:965–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fonseca FG, Lanna MC, Campos MA, Kitajima EW, Peres JN, Golgher RR, Ferreira PC, Kroon EG (1998) Morphological and molecular characterization of the poxvirus BeAn 58058. Arch Virol 143:1171–1186

    Article  CAS  PubMed  Google Scholar 

  12. da Fonseca FG, Trindade GS, Silva RL, Bonjardim CA, Ferreira PC, Kroon EG (2002) Characterization of a vaccinia-like virus isolated in a Brazilian forest. J Gen Virol 83:223–228

    Article  PubMed  Google Scholar 

  13. Mones A, Ojasti J (1986) Hydrochoerus hydrochaeris. Mamm Species 264:1–7

    Article  Google Scholar 

  14. Herrera EA, Macdonald DW (1989) Resource utilization and territorially in group-living capybaras (Hydrochoerus hydrochaeris). J Anim Ecol 58:667–679

    Article  Google Scholar 

  15. Ferraz KMPMB, Ferraz SFB, Moreira JR, Couto HTZ, Verdade LM (2007) Capybara (Hydrochoerus hydrochaeris) distribution in agroecosystems: a cross scale habitat analysis. J Biogeogr 34:223–230

    Article  Google Scholar 

  16. Ferraz KMPMB, Manly B, Verdade LM (2010) The influence of environmental variables on capybara (Hydrochoerus hydrochaeris: Rodentia, Hydrochoeridae) detectability in anthropogenic environments of southeastern Brazil. Popul Ecol 52:263–270

    Article  Google Scholar 

  17. Ferraz KMPMB, Peterson AT, Scachetti-Pereira R, Vettorazzi CA, Verdade LM (2009) Distribution of capybaras in an agroecosystem, southeastern Brazil, based on ecological niche modeling. J Mammal 90:189–194

    Article  Google Scholar 

  18. Ferraz KMPMB, Lechevalier M, Couto HTZ, Verdade LM (2003) Damage caused by capybaras in a corn field. Sci Agricola 60:191–194

    Article  Google Scholar 

  19. Embrapa Pantanal (2007) Capybara diseases. Embrapa Pantanal, Brazil, p 74

    Google Scholar 

  20. Krawczak FS, Nieri-Bastos FA, Nunes FP, Soares JF, Moraes-Filho J, Labruna MB (2014) Rickettsial infection in Amblyomma cajennense ticks and capybaras (Hydrochoerus hydrochaeris) in a Brazilian spotted fever-endemic area. Parasit Vectors 7:7

    Article  PubMed  PubMed Central  Google Scholar 

  21. Moreira CA (1955) Notes on the vaccinia vírus evolution in wild animals from the Brazilian fauna. Memórias do Instituto Oswaldo Cruz, Brazil

  22. Barbosa AV, Medaglia ML, Soares HS, Quixabeira-Santos JC, Gennari SM, Damaso CR (2014) Presence of neutralizing antibodies to orthopoxvirus in capybaras (Hydrochoerus hydrochaeris) in Brazil. J Infect Dev Ctries 8:1646–1649

    Article  PubMed  Google Scholar 

  23. Ferreira JM, Abrahão JS, Drumond BP, Oliveira FM, Alves PA, Pascoal-Xavier MA, Lobato ZI, Bonjardim CA, Ferreira PC, Kroon EG (2008) Vaccinia virus: shedding and horizontal transmission in a murine model. J Gen Virol 89:2986–2991

    Article  CAS  PubMed  Google Scholar 

  24. Abrahão JS, GeS Trindade, Ferreira JM, Campos RK, Bonjardim CA, Ferreira PC, Kroon EG (2009) Long-lasting stability of Vaccinia virus strains in murine feces: implications for virus circulation and environmental maintenance. Arch Virol 154:1551–1553

    Article  PubMed  Google Scholar 

  25. D’Anunciação L, Guedes MI, Oliveira TL, Rehfeld I, Bonjardim CA, Ferreira PP, GeS Trindade, Lobato ZP, Kroon EG, Abrahão JS (2012) Filling one more gap: experimental evidence of horizontal transmission of Vaccinia virus between bovines and rodents. Vector Borne Zoonotic Dis 12:61–64

    Article  PubMed  Google Scholar 

  26. Joklik WK (1962) Some properties of poxvirus DNA. J Mol Biol 5(3):265–274

    Article  CAS  Google Scholar 

  27. Joklik WK, Becker Y (1964) The replication and coating of vaccinia DNA. J Mol Biol 10(3):452–474

    Article  CAS  PubMed  Google Scholar 

  28. Sambrook J, Fritsch EF, Maniatis T (eds) (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  29. Abrahão JS, Lima LS, Assis FL, Alves PA, Silva-Fernandes AT, Cota MM, Ferreira VM, Campos RK, Mazur C, Lobato ZI, Trindade GS, Kroon EG (2009) Nested-multiplex PCR detection of orthopoxvirus and parapoxvirus directly from exanthematic clinical samples. Virol J 6:140

    Article  PubMed  PubMed Central  Google Scholar 

  30. Meyer H, Pfeffer M, Rziha HJ (1994) Sequence alterations within and downstream of the A-type inclusion protein genes allow differentiation of Orthopoxvirus species by polymerase chain reaction. J Gen Virol 75(Pt 8):1975–1981

    Article  CAS  PubMed  Google Scholar 

  31. Ropp SL, Jin Q, Knight JC, Massung RF, Esposito JJ (1995) PCR strategy for identification and differentiation of small pox and other orthopoxviruses. J Clin Microbiol 33:2069–2076

    CAS  PubMed  PubMed Central  Google Scholar 

  32. de Souza Trindade G, Li Y, Olson VA, Emerson G, Regnery RL, da Fonseca FG, Kroon EG, Damon I (2008) Real-time PCR assay to identify variants of vaccinia virus: implications for the diagnosis of bovine vaccinia in Brazil. J Virol Methods 152:63–71

    Article  Google Scholar 

  33. Schrader C, Schielke A, Ellerbroek L, Johne R (2012) PCR inhibitors—occurrence, properties and removal. J Appl Microbiol 113(5):1014–1026

    Article  CAS  PubMed  Google Scholar 

  34. Rivetti AV Jr, Guedes MIMC, Rehfelda IS, Oliveira TML, Matos ACD, Abrahão JS, Kroon EG, Lobato ZIP (2013) Bovine vaccinia, a systemic infection: evidence of fecal shedding, viremia and detection in lymphoid organs. Vet Microbiol 162(1):103–111

    Article  CAS  PubMed  Google Scholar 

  35. Hutson C, Olson V, Carroll D, Abel J, Hughes C, Braden Z, Weiss S, Self J, Osorio J, Hudson P, Dillon M, Karem K, Damon I, Regnery R (2009) A prairie dog animal model of systemic orthopoxvirus disease using West African and Congo Basin strains of monkeypox virus. J Gen Virol 90(2):323–333

    Article  CAS  PubMed  Google Scholar 

  36. Hutson CL, Nakazawa YJ, Self J, Olson VA, Regnery RL et al (2015) Laboratory investigations of African pouched rats (Cricetomys gambianus) as a potential reservoir host species for monkeypox virus. PLoS Negl Trop Dis 9(10):e0004013

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from Fundação de Amparo a Pesquisado Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). From April, 2016 onwards LALD was funded by European Research Council (ERC) [EU FP7/2007-2013 (Micro-RIP 2014-2019, project #615146)]. From March 2016 onwards GMFA was funded by the Finnish Centre of Excellence Program of the Academy of Finland (CoE in Biological Interactions 2012–2017, project #252411). We would like to thank Ana Paula Moreira for obtaining the samples from Pantanal and Juliano Leal de Paula from Núcleo de Análise de Genoma e Expressão Gênica (NAGE)-Departamento de Bioquímica e Imunologia (ICB—UFMG). GST, JSA and EGK are researchers from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giliane de Souza Trindade.

Additional information

L. A. L. Dutra and G. M. de Freitas Almeida contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutra, L.A.L., de Freitas Almeida, G.M., Oliveira, G.P. et al. Molecular evidence of Orthopoxvirus DNA in capybara (Hydrochoerus hydrochaeris) stool samples. Arch Virol 162, 439–448 (2017). https://doi.org/10.1007/s00705-016-3121-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-3121-3

Keywords

Navigation