Skip to main content
Log in

Whole-genome sequence analysis of G3 and G14 equine group A rotaviruses isolated in the late 1990s and 2009-2010

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Equine group A rotavirus (RVA) G3P[12] and G14P[12] strains cause gastroenteritis in foals worldwide. Both of these strains have been co-circulating in Japan since G14P[12] strains emerged in the late 1990s. Although it is important to comprehensively understand the evolution of RVA strains, whole-genome sequence data on recent equine RVA strains in Japan are lacking. Therefore, in this study, whole-genome analysis of 23 equine RVA isolates from the late 1990s and 2009-2010 and the vaccine strain RVA/Horse-tc/JPN/HO-5/1982/G3P[12] (HO-5) was performed. The G3 strains, including strain HO-5, shared a G3-P[12]-I6-R2-C2-M3-A10-N2-T3-E2-H7 genotype constellation, and all of their 11 gene segments were highly conserved, regardless of the year of isolation. G14 strains also exhibited an identical genotype constellation (G14-P[12]-I2-R2-C2-M3-A10-N2-T3-E2-H7), but, phylogenetically, segregated into two lineages within the VP7-G14 and NSP4-E2 genotypes. G14 strains were closely related to G3 strains in their VP4, VP1-3, NSP1-3 and NSP5 gene segments. Interestingly, the NSP4 gene of all G3 and G14 strains isolated in the late 1990s branched into a bovine-RVA-like NSP4 gene cluster. These results indicate that, apart from VP7, VP6, and NSP4 genes, the Japanese equine RVA strains share a highly conserved genetic backbone, and that strains possessing a bovine-RVA-like NSP4 gene were predominant in the late 1990s in Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Browning GF, Chalmers RM, Snodgrass DR, Batt RM, Hart CA, Ormarod SE, Leadon D, Stoneham SJ, Rossdale PD (1991) The prevalence of enteric pathogens in diarrhoeic thoroughbred foals in Britain and Ireland. Equine Vet J 23:405–409

    Article  CAS  PubMed  Google Scholar 

  2. Frederick J, Giguere S, Sanchez LC (2009) Infectious agents detected in the feces of diarrheic foals: a retrospective study of 233 cases (2003-2008). J Vet Intern Med 23:1254–1260

    Article  CAS  PubMed  Google Scholar 

  3. Slovis NM, Elam J, Estrada M, Leutenegger CM (2014) Infectious agents associated with diarrhoea in neonatal foals in central Kentucky: a comprehensive molecular study. Equine Vet J 46:311–316

    Article  CAS  PubMed  Google Scholar 

  4. Estes MK, Greenberg HB (2013) Rotaviruses. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1347–1401

    Google Scholar 

  5. Estes MK, Greenberg HB (2013) Rotaviruses. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1347–1401

    Google Scholar 

  6. Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Banyai K, Brister JR, Buesa J, Esona MD, Estes MK, Gentsch JR, Iturriza-Gomara M, Johne R, Kirkwood CD, Martella V, Mertens PP, Nakagomi O, Parreno V, Rahman M, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Patton JT, Desselberger U, Van Ranst M (2011) Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol 156:1397–1413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Trojnar E, Sachsenröder J, Twardziok S, Reetz J, Otto PH, Johne R (2013) Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses. J Gen Virol 94:136–142

    Article  CAS  PubMed  Google Scholar 

  8. Collins PJ, Cullinane A, Martella V, O’Shea H (2008) Molecular characterization of equine rotavirus in Ireland. J Clin Microbiol 46:3346–3354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Elschner M, Schrader C, Hotzel H, Prudlo J, Sachse K, Eichhorn W, Herbst W, Otto P (2005) Isolation and molecular characterisation of equine rotaviruses from Germany. Vet Microbiol 105:123–129

    Article  CAS  PubMed  Google Scholar 

  10. Garaicoechea L, Mino S, Ciarlet M, Fernandez F, Barrandeguy M, Parreno V (2011) Molecular characterization of equine rotaviruses circulating in Argentinean foals during a 17-year surveillance period (1992-2008). Vet Microbiol 148:150–160

    Article  CAS  PubMed  Google Scholar 

  11. Monini M, Biasin A, Valentini S, Cattoli G, Ruggeri FM (2011) Recurrent rotavirus diarrhoea outbreaks in a stud farm, in Italy. Vet Microbiol 149:248–253

    Article  CAS  PubMed  Google Scholar 

  12. Nemoto M, Tsunemitsu H, Imagawa H, Hata H, Higuchi T, Sato S, Orita Y, Sugita S, Bannai H, Tsujimura K, Yamanaka T, Kondo T, Matsumura T (2011) Molecular characterization and analysis of equine rotavirus circulating in Japan from 2003 to 2008. Vet Microbiol 152:67–73

    Article  PubMed  Google Scholar 

  13. Ntafis V, Fragkiadaki E, Xylouri E, Omirou A, Lavazza A, Martella V (2010) Rotavirus-associated diarrhoea in foals in Greece. Vet Microbiol 144:461–465

    Article  CAS  PubMed  Google Scholar 

  14. Tsunemitsu H, Imagawa H, Togo M, Shouji T, Kawashima K, Horino R, Imai K, Nishimori T, Takagi M, Higuchi T (2001) Predominance of G3B and G14 equine group A rotaviruses of a single VP4 serotype in Japan. Arch Virol 146:1949–1962

    Article  CAS  PubMed  Google Scholar 

  15. Ghosh S, Shintani T, Kobayashi N (2012) Evidence for the porcine origin of equine rotavirus strain H-1. Vet Microbiol 158:410–414

    Article  CAS  PubMed  Google Scholar 

  16. Ghosh S, Taniguchi K, Aida S, Ganesh B, Kobayashi N (2013) Whole genomic analyses of equine group A rotaviruses from Japan: evidence for bovine-to-equine interspecies transmission and reassortment events. Vet Microbiol 166:475–48515

    Article  Google Scholar 

  17. Matthijnssens J, Mino S, Papp H, Potgieter C, Novo L, Heylen E, Zeller M, Garaicoechea L, Badaracco A, Lengyel G, Kisfali P, Cullinane A, Collins PJ, Ciarlet M, O’Shea H, Parreno V, Banyai K, Barrandeguy M, Van Ranst M (2012) Complete molecular genome analyses of equine rotavirus A strains from different continents reveal several novel genotypes and a largely conserved genotype constellation. J Gen Virol 93:866–875

    Article  CAS  PubMed  Google Scholar 

  18. Mino S, Matthijnssens J, Badaracco A, Garaicoechea L, Zeller M, Heylen E, Van Ranst M, Barrandeguy M, Parreno V (2013) Equine G3P[3] rotavirus strain E3198 related to simian RRV and feline/canine-like rotaviruses based on complete genome analyses. Vet Microbiol 161:239–246

    Article  CAS  PubMed  Google Scholar 

  19. El-Attar L, Dhaliwal W, Howard CR, Bridger JC (2001) Rotavirus cross-species pathogenicity: molecular characterization of a bovine rotavirus pathogenic for pigs. Virology 291:172–182

    Article  CAS  PubMed  Google Scholar 

  20. Imagawa H, Tanaka T, Sekiguchi K, Fukunaga Y, Anzai T, Minamoto N, Kamada M (1993) Electropherotypes, serotypes, and subgroups of equine rotaviruses isolated in Japan. Arch Virol 131:169–176

    Article  CAS  PubMed  Google Scholar 

  21. Imagawa H, Kato T, Tsunemitsu H, Tanaka H, Sato S, Higuchi T (2005) Field study of inactivated equine rotavirus vaccine. J Equine Sci 16:35–44

    Article  Google Scholar 

  22. Nemoto M, Tsunemitsu H, Murase H, Nambo Y, Sato S, Orita Y, Imagawa H, Bannai H, Tsujimura K, Yamanaka T, Matsumura T, Kondo T (2012) Antibody response in vaccinated pregnant mares to recent G3BP[12] and G14P[12] equine rotaviruses. Acta Vet Scand 54:63

    Article  PubMed Central  PubMed  Google Scholar 

  23. Katayama K, Kurihara C, Fukushi S, Hoshino FB, Ishikawa K, Nagai H, Ando T, Oya A (1995) Characterization of the hog cholera virus 5′ terminus. Virus Genes 10:185–187

    Article  CAS  PubMed  Google Scholar 

  24. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  26. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  27. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  29. Maes P, Matthijnssens J, Rahman M, Van Ranst M (2009) RotaC: a web-based tool for the complete genome classification of group A rotaviruses. BMC Microbiol 9:238

    Article  PubMed Central  PubMed  Google Scholar 

  30. Minami-Fukuda F, Nagai M, Takai H, Murakami T, Ozawa T, Tsuchiaka S, Okazaki S, Katayama Y, Oba M, Nishiura N, Sassa Y, Omatsu T, Furuya T, Koyama S, Shirai J, Tsunemitsu H, Fujii Y, Katayama K, Mizutani T (2013) Detection of bovine group a rotavirus using rapid antigen detection kits, rt-PCR and next-generation DNA sequencing. J Vet Med Sci 75:1651–1655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Masuda T, Nagai M, Yamasato H, Tsuchiaka S, Okazaki S, Katayama Y, Oba M, Nishiura N, Sassa Y, Omatsu T, Furuya T, Koyama S, Shirai J, Taniguchi K, Fujii Y, Todaka R, Katayama K, Mizutani T (2014) Identification of novel bovine group A rotavirus G15P[14] strain from epizootic diarrhea of adult cows by de novo sequencing using a next-generation sequencer. Vet Microbiol 171:66–73

    Article  CAS  PubMed  Google Scholar 

  32. Ghosh S, Kobayashi N (2011) Whole-genomic analysis of rotavirus strains: current status and future prospects. Future Microbiol 6:1049–1065

    Article  CAS  PubMed  Google Scholar 

  33. Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, McDonald SM, Palombo EA, Iturriza-Gomara M, Maes P, Patton JT, Rahman M, Van Ranst M (2008) Full genome-based classification of rotaviruses reveals a common origin between human Wa-Like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol 82:3204–3219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Imagawa H, Ishida S, Uesugi S, Masanobu K, Fukunaga Y, Nakagomi O (1994) Genetic analysis of equine rotavirus by RNA-RNA hybridization. J Clin Microbiol 32:2009–2012

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Nakagomi T, Tsunemitsu H, Imagawa H, Nakagomi O (2003) Genomic RNA constellation of recently emerging serotype G14 equine rotavirus strains in Japan that is highly homologous with prototype G3 and G14 strains previously identified in the United States of America. Arch Virol 148:925–935

    Article  CAS  PubMed  Google Scholar 

  36. Burke B, Desselberger U (1996) Rotavirus pathogenicity. Virology 218:299–305

    Article  CAS  PubMed  Google Scholar 

  37. Hoshino Y, Saif LJ, Kang SY, Sereno MM, Chen WK, Kapikian AZ (1995) Identification of group A rotavirus genes associated with virulence of a porcine rotavirus and host range restriction of a human rotavirus in the gnotobiotic piglet model. Virology 209:274–280

    Article  CAS  PubMed  Google Scholar 

  38. Kim HJ, Park JG, Alfajaro MM, Kim DS, Hosmillo M, Son KY, Lee JH, Bae YC, Park SI, Kang MI, Cho KO (2012) Pathogenicity characterization of a bovine triple reassortant rotavirus in calves and piglets. Vet Microbiol 159:11–22

    Article  CAS  PubMed  Google Scholar 

  39. Kojima K, Taniguchi K, Kobayashi N (1996) Species-specific and interspecies relatedness of NSP1 sequences in human, porcine, bovine, feline, and equine rotavirus strains. Arch Virol 141:1–12

    Article  CAS  PubMed  Google Scholar 

  40. Mori Y, Borgan MA, Takayama M, Ito N, Sugiyama M, Minamoto N (2003) Roles of outer capsid proteins as determinants of pathogenicity and host range restriction of avian rotaviruses in a suckling mouse model. Virology 316:126–134

    Article  CAS  PubMed  Google Scholar 

  41. Batty EM, Wong TH, Trebes A, Argoud K, Attar M, Buck D, Ip CL, Golubchik T, Cule M, Bowden R, Manganis C, Klenerman P, Barnes E, Walker AS, Wyllie DH, Wilson DJ, Dingle KE, Peto TE, Crook DW, Piazza P (2013) A modified RNA-Seq approach for whole genome sequencing of RNA viruses from faecal and blood samples. PLoS One 8:e66129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Nakamura S, Yang CS, Sakon N, Ueda M, Tougan T, Yamashita A, Goto N, Takahashi K, Yasunaga T, Ikuta K, Mizutani T, Okamoto Y, Tagami M, Morita R, Maeda N, Kawai J, Hayashizaki Y, Nagai Y, Horii T, Iida T, Nakaya T (2009) Direct metagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach. PLoS One 4:e4219

    Article  PubMed Central  PubMed  Google Scholar 

  43. Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nature Methods 5:16–18

    Article  CAS  PubMed  Google Scholar 

  44. Imagawa H, Ando Y, Sugiura T, Wada R, Hirasawa K, Akiyama Y (1981) Isolation of a foal rotavirus in MA-104 cells. Bull Equine Res Inst 18:119–128

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants-in-Aid for Research on Emerging and Re-emerging Infectious Diseases by the Ministry of Health, Labour and Welfare, Japan (grant H24-shinkou-ippan-005).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Nagai.

Additional information

M. Nemoto and M. Nagai contributed equally to the work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemoto, M., Nagai, M., Tsunemitsu, H. et al. Whole-genome sequence analysis of G3 and G14 equine group A rotaviruses isolated in the late 1990s and 2009-2010. Arch Virol 160, 1171–1179 (2015). https://doi.org/10.1007/s00705-015-2374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2374-6

Keywords

Navigation