Skip to main content

Advertisement

Log in

Delineation of urban expansion and drought-prone areas using vegetation conditions and other geospatial indices

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Drought is a dominant climatic feature in arid and semiarid regions. Climate change, temperature variability, and anthropogenic activities caused an increase in agricultural droughts in many regions. Investigation of drought dynamics is important for innovative planning and management of natural resources in drought-prone areas. Remote sensing indices and earth observational datasets were used in this study to investigate droughts in the Bikaner city of Rajasthan, India. Vegetation condition index (VCI), temperature condition index (TCI), and vegetation health index (VHI), estimated from multitemporal Landsat datasets, were used for monitoring the drought-prone areas. Land use land cover (LULC) map, normalized difference vegetation index (NDVI), and surface temperature were also calculated for monitoring the decadal changes in surface features. The results showed that barren lands decreased from around 162.75 to 79.59 km2. The annual average temperature increased by 0.72 °C, while agricultural land increased by 33.83 km2 during 1990‒2020. There was a gradual increase in droughts, but the increase was more in recent years than in the early period. The climatic condition revealed from VCI, TCI, and NDVI maps indicated most of the Bikaner city is prone to moderate and extreme droughts. The study indicates the need for VCI-based real-time drought monitoring for drought management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abduallah RM, Alosta MM, Bahri S (2021) On the analysis and assessment of large concrete dam using finite element approach. Knowledge-Based Eng Sci 2(3):23–33

    Google Scholar 

  • AghaKouchak A, Farahmand A, Melton FS, Teixeira J, Anderson MC, Wardlow BD, Hain CR (2015) Remote sensing of drought: progress, challenges and opportunities. Rev Geophys 53(2):452–480

    Article  Google Scholar 

  • Ahmed S (2018) Assessment of urban heat islands and impact of climate change on socioeconomic over Suez Governorate using remote sensing and GIS techniques. Egypt J Remote Sens Space Sci 21(1):15–25

    Google Scholar 

  • Aitkenhead I, Kuleshov Y, Watkins AB, Bhardwaj J, Asghari A (2021) Assessing agricultural drought management strategies in the Northern Murray-Darling Basin. Nat Hazards 109(2):1425–1455

    Article  Google Scholar 

  • Akdegirmen O & Mehr AD. (2022). Stormwater Drainage Impact of Impervious Structures on Surrounding Soil.

  • Amiri R, Weng Q, Alimohammadi A, Alavipanah SK (2009) Spatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area. Iran Remote Sens Environ 113(12):2606–2617. https://doi.org/10.1016/j.rse.2009.07.021

    Article  Google Scholar 

  • Armanuos A, Ahmed K, SanusiShiru M, Jamei M (2021) impact of increasing pumping discharge on groundwater level in the Nile Delta aquifer. Egypt Knowledge-Based Eng Sci 2(2):13–23. https://doi.org/10.51526/kbes.2021.2.2.13-23

    Article  Google Scholar 

  • Barsi JA, Schott JR, Hook SJ, Raqueno NG, Markham BL, Radocinski RG (2014) Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sensing 6(11):11607–11626. https://doi.org/10.3390/rs61111607

    Article  Google Scholar 

  • Bento VA, Trigo IF, Gouveia CM, DaCamara CC (2018) Contribution of land surface temperature (TCI) to vegetation health index: a comparative study using clear sky and all-weather climate data records. Remote Sens 10(9):1324

    Article  Google Scholar 

  • Beyaztas U, Yaseen ZM (2019) Drought interval simulation using functional data analysis. J Hydrol 579:124141

    Article  Google Scholar 

  • Bougara H, Hamed KB, Borgemeister C, Tischbein B, Kumar N (2020) Analyzing trend and variability of rainfall in the Tafna basin (Northwestern Algeria). Atmosphere 11(4):347

    Article  Google Scholar 

  • Chakraborty T, Hsu A, Manya D, Sheriff G (2020) A spatially explicit surface urban heat island database for the United States: characterization, uncertainties, and possible applications. ISPRS J Photogramm Remote Sens 168:74–88. https://doi.org/10.1016/j.isprsjprs.2020.07.021

    Article  Google Scholar 

  • Chandler TJ. (1976). Urban climatology and urban planning. Geographical J, 57-59. https://doi.org/10.2307/1796024

  • Cohen J. (1968). "Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit." Psychological Bulletin.

  • Corner RJ, Dewan AM,  Chakma S (2013) Monitoring and prediction of land-use and land-cover (LULC) change. In: Dhaka megacity. Springer, Dordrecht,  pp 75–97. https://doi.org/10.1007/978-94-007-6735-5_5

  • Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R, ... & Patterson C. (2009). Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. The lancet373(9676), 1693-1733

  • DanandehMehr A, Akdegirmen O (2021) Estimation of urban imperviousness and its impacts on flashfloods in Gazipaşa. Turkey. Knowledge-Based Eng Sci 2(1):9–17. https://doi.org/10.51526/kbes.2021.2.1.9-17

    Article  Google Scholar 

  • Das P, Vamsi KS, Zhenke Z (2020) Decadal variation of the land surface temperatures (LST) and urban heat island (UHI) over Kolkata City projected using MODIS and ERA-Interim datasets. Aerosol Sci Eng 4(3):200–209

    Article  Google Scholar 

  • Estoque RC, Murayama Y (2017) Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). ISPRS J Photogramm Remote Sens 133:18–29. https://doi.org/10.1016/j.isprsjprs.2017.09.008

    Article  Google Scholar 

  • Falah N, Karimi A, Harandi AT (2020) Urban growth modeling using cellular automata model and AHP (case study: Qazvin city). Model Earth Syst Environ 6(1):235–248. https://doi.org/10.1007/s40808-019-00674-z

    Article  Google Scholar 

  • Ford TW, Quiring SM (2019) Comparison of contemporary in situ, model, and satellite remote sensing soil moisture with a focus on drought monitoring. Water Resour Res 55(2):1565–1582

    Article  Google Scholar 

  • Gao Y, Zhang W (2009) LULC classification and topographic correction of Landsat-7 ETM+ imagery in the Yangjia River Watershed: the influence of DEM resolution. Sensors 9(3):1980–1995

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63(2–3):90–104

    Article  Google Scholar 

  • Guha S, Govil H, Dey A, Gill N (2018) Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city. Italy Eur J Remote Sens 51(1):667–678

    Article  Google Scholar 

  • Hadri A, Saidi MEM, Boudhar A (2021) Multiscale drought monitoring and comparison using remote sensing in a Mediterranean arid region: a case study from west-central Morocco. Arab J Geosci 14(2):1–18

    Article  Google Scholar 

  • Halder B, Bandyopadhyay J (2022) Delineation of geospatial indices based water bodies’ and vegetation change mapping using Sentinel-2 imagery in Canning blocks of south 24 parganas district, India. Remote Sens Appl: Soc Environ 25:100688. https://doi.org/10.1016/J.RSASE.2021.100688

    Article  Google Scholar 

  • Halder B, Bandyopadhyay J, Banik P (2021a) Monitoring the effect of urban development on urban heat island based on remote sensing and geospatial approach in Kolkata and adjacent areas. India Sustain Cities Soc 74:103186

    Article  Google Scholar 

  • Halder B, Haghbin M, Farooque AA (2021b) An assessment of urban expansion impacts on land transformation of Rajpur-Sonarpur municipality. Knowledge-Based Eng Sci 2(3):34–53. https://doi.org/10.51526/kbes.2021.2.3.34-53

    Article  Google Scholar 

  • Hamlaoui-Moulai L, Mesbah M, Souag-Gamane D, Medjerab A (2013) Detecting hydro-climatic change using spatiotemporal analysis of rainfall time series in Western Algeria. Nat Hazards 65(3):1293–1311

    Article  Google Scholar 

  • Han H, Bai J, Yan J, Yang H, Ma G (2021) A combined drought monitoring index based on multi-sensor remote sensing data and machine learning. Geocarto Int 36(10):1161–1177

    Article  Google Scholar 

  • Han H, Yang C, Song J (2015) Scenario simulation and the prediction of land use and land cover change in Beijing. China Sustain 7(4):4260–4279. https://doi.org/10.3390/su7044260

    Article  Google Scholar 

  • Hassan Z, Shabbir R, Ahmad SS, Malik AH, Aziz N, Butt A, Erum S (2016) Dynamics of land use and land cover change (LULCC) using geospatial techniques: a case study of Islamabad Pakistan. Springerplus 5(1):1–11. https://doi.org/10.1186/s40064-016-2414-z

    Article  Google Scholar 

  • Hazaymeh K, Hassan QK (2016) Remote sensing of agricultural drought monitoring: a state of art review. AIMS Environ Sci 3(4):604–630

    Article  Google Scholar 

  • Ifatimehin OO, Ufuah ME (2006) An analysis of urban expansion and loss of vegetation cover in Lokoja, using GIS techniques. Zaria Geogr 17(1):28–36

    Google Scholar 

  • Ji T, Li G, Yang H, Liu R, He T (2018) Comprehensive drought index as an indicator for use in drought monitoring integrating multi-source remote sensing data: a case study covering the Sichuan-Chongqing region. Int J Remote Sens 39(3):786–809

    Article  Google Scholar 

  • Jiao W, Tian C, Chang Q, Novick KA, Wang L (2019) A new multi-sensor integrated index for drought monitoring. Agric for Meteorol 268:74–85

    Article  Google Scholar 

  • Jin Z, Zhang L, Lv J, Sun X (2021) The application of geostatistical analysis and receptor model for the spatial distribution and sources of potentially toxic elements in soils. Environ Geochem Health 43(1):407–421. https://doi.org/10.1007/s10653-020-00729-6

  • Joorabian Shooshtari S, Silva T, Raheli Namin B, Shayesteh K (2020) Land use and cover change assessment and dynamic spatial modeling in the Ghara-su Basin, Northeastern Iran. J Indian Soc Remote Sens 48(1):81–95. https://doi.org/10.1007/s12524-019-01054-x

  • Kamoutsis A, Chronopoulos K, Matsoukis A (2018) Altitude and canopy cover effects on air temperature in a mountainous region of Ionian Islands. Greece Curr World Environ 13(3):292–298. https://doi.org/10.12944/CWE.13.3.03

    Article  Google Scholar 

  • Karnieli A, Bayasgalan M, Bayarjargal Y, Agam N, Khudulmur S, Tucker CJ (2006) Comments on the use of the vegetation health index over Mongolia. Int J Remote Sens 27(10):2017–2024

    Article  Google Scholar 

  • Kedia S, Bhakare SP, Dwivedi AK, Islam S, Kaginalkar A (2021) Estimates of change in surface meteorology and urban heat island over northwest India: Impact of urbanization. Urban Climate 36:100782

    Article  Google Scholar 

  • Khaleefa O, Kamel AH (2021) On the evaluation of water quality index: Case study of Euphrates river. Iraq Knowledge-Based Eng Sci 2(2):35–43

    Article  Google Scholar 

  • Kim SW, Brown RD (2021) Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Sci Total Environ 779:146389

    Article  Google Scholar 

  • Kogan FN (1995a) Application of vegetation index and brightness temperature for drought detection. Adv Space Res 15(11):91–100

    Article  Google Scholar 

  • Kogan FN (1995b) Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bull Am Meteor Soc 76(5):655–668

    Article  Google Scholar 

  • Kulkarni SS, Wardlow BD, Bayissa YA, Tadesse T, Svoboda MD, Gedam SS (2020) Developing a remote sensing-based combined drought indicator approach for agricultural drought monitoring over Marathwada. India Remote Sens 12(13):2091

    Article  Google Scholar 

  • Lambin EF & Geist HJ. (Eds.). (2008). Land-use and land-cover change: local processes and global impacts. Springer Science & Business Media.

  • Li J, Song C, Cao L, Zhu F, Meng X, Wu J (2011) Impacts of landscape structure on surface urban heat islands: a case study of Shanghai. China Remote Sens Environ 115(12):3249–3263. https://doi.org/10.1016/j.rse.2011.07.008

    Article  Google Scholar 

  • Liu WT, Kogan FN (1996) Monitoring regional drought using the vegetation condition index. Int J Remote Sens 17(14):2761–2782

    Article  Google Scholar 

  • Liu L, Zhang Y (2011) Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong. Remote Sens 3(7):1535–1552. https://doi.org/10.3390/rs3071535

    Article  Google Scholar 

  • Liu X, Zhu X, Pan Y, Li S, Liu Y, Ma Y (2016) Agricultural drought monitoring: Progress, challenges, and prospects. J Geog Sci 26(6):750–767

    Article  Google Scholar 

  • Lozano-Parra J, Pulido M, Fondón CL, Schnabel S (2018) How do soil moisture and vegetation covers influence soil temperature in drylands of Mediterranean regions? Water 10:1747. https://doi.org/10.3390/w10121747

    Article  Google Scholar 

  • Lu D, Weng Q (2006) Use of impervious surface in urban land-use classification. Remote Sens Environ 102(1–2):146–160

    Article  Google Scholar 

  • Lu D, Hetrick S, Moran E, Li G (2012) Application of time series Landsat images to examining land-use/land-cover dynamic change. Photogramm Eng Remote Sens 78(7):747

    Article  Google Scholar 

  • Malik A, Kumar A, Salih SQ, Kim S, Kim NW, Yaseen ZM, Singh VP (2020) Drought index prediction using advanced fuzzy logic model: regional case study over Kumaon in India. PLoS ONE 15(5):e0233280

    Article  Google Scholar 

  • Malik A, Kumar A, Kisi O, Khan N, Salih SQ, Yaseen ZM (2021) Analysis of dry and wet climate characteristics at Uttarakhand (India) using effective drought index. Nat Hazards 105(2):1643–1662

    Article  Google Scholar 

  • Mallick J, Bindajam AA, AlQadhi S, Ahmed M, Hang HT, Thanh NV (2020) A comparison of four land surface temperature retrieval method using TERRA-ASTER satellite images in the semi-arid region of Saudi Arabia. Geocarto Int 1–25. https://doi.org/10.1080/10106049.2020.1790675

  • Mallick J, Singh VP, Almesfer MK, Talukdar S, Alsubhi M, Ahmed M, Khan RA (2021) Spatio-temporal analysis and simulation of land cover changes and their impacts on land surface temperature in urban agglomeration of Bisha Watershed, Saudi Arabia. Geocarto Int 1–27. https://doi.org/10.1080/10106049.2021.1980616

  • Masoudi M (2021) Estimation of the spatial climate comfort distribution using tourism climate index (TCI) and inverse distance weighting (IDW)(case study: Fars Province, Iran). Arab J Geosci 14(5):1–13

    Article  Google Scholar 

  • Mehr AD, Akdegirmen O (2021) Estimation of urban imperviousness and its impacts on flashfloods in Gazipaşa. Turkey Knowledge-Based Eng Sci 2(1):9–17

    Article  Google Scholar 

  • Meshesha TW, Tripathi SK, Khare D (2016) Analyses of land use and land cover change dynamics using GIS and remote sensing during 1984 and 2015 in the Beressa Watershed Northern Central Highland of Ethiopia. Model Earth Syst Environ 2(4):1–12

    Article  Google Scholar 

  • Mutowo G & Chikodzi D. (2014). Remote sensing based drought monitoring in Zimbabwe. Disaster Prevention and Management.

  • Novotná M, Mikeš O, Komprdová K (2015) Development and comparison of regression models for the uptake of metals into various field crops. Environ Pollut 207:357–364. https://doi.org/10.1016/j.envpol.2015.09.043

    Article  Google Scholar 

  • Owojori A & Xie H. (2005, March). Landsat image-based LULC changes of San Antonio, Texas using advanced atmospheric correction and object-oriented image analysis approaches. In 5th international symposium on remote sensing of urban areas, Tempe, AZ.

  • Patel NR, Anapashsha R, Kumar S, Saha SK, Dadhwal VK (2009) Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status. Int J Remote Sens 30(1):23–39

    Article  Google Scholar 

  • Pei F, Wu C, Liu X, Li X, Yang K, Zhou Y, ... & Xia G. (2018). Monitoring the vegetation activity in China using vegetation health indices. Agri Forest Meteorol 248, 215-227

  • Pramanik S, Punia M (2019) Assessment of green space cooling effects in dense urban landscape: a case study of Delhi, India. Modeling Earth Systems and Environment 5(3):867–884. https://doi.org/10.1007/s40808-019-00573-3

    Article  Google Scholar 

  • Pramanik S, Punia M (2020) Land use/land cover change and surface urban heat island intensity: source–sink landscape-based study in Delhi, India. Environ Dev Sustain 22(8):7331–7356

    Article  Google Scholar 

  • Potter BE, Teclaw RM, Zasada JC (2001) The impact of forest structure on near-ground temperatures during two years of constructing temperature extremes. Agric for Meteorol 106(4):331–336

    Article  Google Scholar 

  • Quiring SM, Ganesh S (2010) Evaluating the utility of the vegetation condition index (VCI) for monitoring meteorological drought in Texas. Agric for Meteorol 150(3):330–339

    Article  Google Scholar 

  • Qutbudin I, Shiru MS, Sharafati A, Ahmed K, Al-Ansari N, Yaseen ZM, ... & Wang X. (2019). Seasonal drought pattern changes due to climate variability: case study in Afghanistan. Water, 11(5), 1096

  • Ramachandra TV, Bharath HA, Vinay S (2013) Land use land cover dynamics in a rapidly urbanizing landscape. SCIT J 13:1–12

    Google Scholar 

  • Rajeshwari A, Mani ND (2014) Estimation of land surface temperature of Dindigul district using Landsat 8 data. Int J Res Eng Technol 3(5):122–126

    Article  Google Scholar 

  • Rhee J, Im J, Carbone GJ (2010) Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens Environ 114(12):2875–2887

    Article  Google Scholar 

  • Rita A, Bonanomi G, Allevato E, Borghetti M, Cesarano G, Mogavero V, Rossi S, Saulino L, Zotti M, Saracino A (2021) Topography modulates near-ground microclimate in the Mediterranean Fagus sylvatica treeline. Sci Rep 11:8122. https://doi.org/10.1038/s41598-021-87661-6

    Article  Google Scholar 

  • Roy DP, Wulder MA, Loveland TR, Woodcock CE, Allen RG, Anderson MC, ... & Zhu Z. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sens Environ 145, 154-172. https://doi.org/10.1016/j.rse.2014.02.001

  • Sanikhani H, Kisi O, Maroufpoor E, Yaseen ZM (2019) Temperature-based modeling of reference evapotranspiration using several artificial intelligence models: application of different modeling scenarios. Theoret Appl Climatol 135(1):449–462

    Article  Google Scholar 

  • Sekertekin A, Bonafoni S (2020) Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sens 12(2):294. https://doi.org/10.3390/rs12020294

    Article  Google Scholar 

  • Sejati AW, Buchori I, Rudiarto I (2019) The spatio-temporal trends of urban growth and surface urban heat islands over two decades in the Semarang Metropolitan Region. Sustain Cities Soc 46:101432

    Article  Google Scholar 

  • Shahabfar A, Ghulam A, Eitzinger J (2012) Drought monitoring in Iran using the perpendicular drought indices. Int J Appl Earth Obs Geoinf 18:119–127

    Google Scholar 

  • Shen R, Huang A, Li B, Guo J (2019) Construction of a drought monitoring model using deep learning based on multi-source remote sensing data. Int J Appl Earth Obs Geoinf 79:48–57

    Google Scholar 

  • Singh RP, Roy S, Kogan F (2003) Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. Int J Remote Sens 24(22):4393–4402

    Article  Google Scholar 

  • Singh P, Kikon N, Verma P (2017) Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustain Cities Soc 32:100–114

    Article  Google Scholar 

  • Sobrino JA, Irakulis I (2020) A methodology for comparing the surface urban heat island in selected urban agglomerations around the world from sentinel-3 SLSTR data. Remote Sens 12(12):2052. https://doi.org/10.3390/RS12122052

    Article  Google Scholar 

  • Sobrino JA, Raissouni N, Li ZL (2001) A comparative study of land surface emissivity retrieval from NOAA data. Remote Sens Environ 75(2):256–266. https://doi.org/10.1016/S0034-4257(00)00171-1

    Article  Google Scholar 

  • Sobrino JA, Jiménez-Muñoz JC, Paolini L (2004) Land surface temperature retrieval from LANDSAT TM 5. Remote Sens Environ 90(4):434–440. https://doi.org/10.1016/j.rse.2004.02.003

    Article  Google Scholar 

  • Somvanshi SS, Bhalla O, Kunwar P, Singh M, Singh P (2020) Monitoring spatial LULC changes and its growth prediction based on statistical models and earth observation datasets of Gautam Budh Nagar, Uttar Pradesh, India. Environ Dev Sustain 22(2):1073–1091

    Article  Google Scholar 

  • Strzepek K, Yohe G, Neumann J, Boehlert B (2010) Characterizing changes in drought risk for the United States from climate change. Environ Res Lett 5(4):044012

    Article  Google Scholar 

  • Su Z, Yacob A, Wen J, Roerink G, He Y, Gao B ... & van Diepen C. (2003). Assessing relative soil moisture with remote sensing data: theory, experimental validation, and application to drought monitoring over the North China Plain. Phys Chem Earth, Parts A/B/C, 28(1-3), 89-101

  • Su Z, He Y, Dong X & Wang L. (2017). Drought monitoring and assessment using remote sensing. In Remote Sens Hydrol Extremes (pp. 151–172). Springer, Cham.

  • Sur C, Park SY, Kim TW & Lee JH. (2019). Remote sensing-based agricultural drought monitoring using hydrometeorological variables. KSCE J Civil Engi

  • Szewczak K, Łoś H, Pudełko R, Doroszewski A, Gluba Ł, Łukowski M, ... & Usowicz B. (2020). Agricultural drought monitoring by MODIS potential evapotranspiration remote sensing data application. Remote Sens 12(20), 3411

  • Tabari H, Marofi S, Aeini A, Talaee PH, Mohammadi K (2011) Trend analysis of reference evapotranspiration in the western half of Iran. Agric for Meteorol 151(2):128–136

    Article  Google Scholar 

  • Tao H, Liao X, Li Y, Xu C, Zhu G, Cassidy DP (2020) Quantifying influences of interacting anthropogenic-natural factors on trace element accumulation and pollution risk in karst soil. Sci Total Environ 721:137770. https://doi.org/10.1016/j.scitotenv.2020.137770

    Article  Google Scholar 

  • Tepanosyan G, Muradyan V, Hovsepyan A, Pinigin G, Medvedev A, Asmaryan S (2021) Studying spatial-temporal changes and relationship of land cover and surface Urban Heat Island derived through remote sensing in Yerevan. Armenia Build Environ 187:107390

    Article  Google Scholar 

  • Tolba MKS & Najib W. (2009). Arab environment: climate change: impact of climate change on Arab countries. Arab Forum for Environ Develop (AFED).

  • Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86(3):370–384

    Article  Google Scholar 

  • Wang PX, Li XW, Gong JY & Song C. (2001). Vegetation temperature condition index and its application for drought monitoring. In IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217) (Vol. 1, pp. 141–143). IEEE.

  • Wang L, Wang P, Li L, Xun L, Kong Q, Liang S (2018) Developing an integrated indicator for monitoring maize growth condition using remotely sensed vegetation temperature condition index and leaf area index. Comput Electron Agric 152:340–349

    Article  Google Scholar 

  • Weng Q, Lu D, Schubring J (2004) Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89(4):467–483. https://doi.org/10.1016/j.rse.2003.11.005

    Article  Google Scholar 

  • West H, Quinn N, Horswell M (2019) Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sens Environ 232:111291

    Article  Google Scholar 

  • Xu X, Du Z, Zhang H (2016) Integrating the system dynamic and cellular automata models to predict land use and land cover change. Int J Appl Earth Obs Geoinf 52:568–579

    Google Scholar 

  • Yu X, Guo X, Wu Z (2014) Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens 6(10):9829–9852

    Article  Google Scholar 

  • Zhang Y, Liu X, Jiao W, Zeng X, Xing X, Zhang L, ... & Hong Y. (2021). Drought monitoring based on a new combined remote sensing index across the transitional area between humid and arid regions in China. Atmospheric Res 264, 105850

  • Zhou X, Wang P, Tansey K, Zhang S, Li H, Wang L (2020) Developing a fused vegetation temperature condition index for drought monitoring at field scales using Sentinel-2 and MODIS imagery. Comput Electron Agric 168:105144

    Article  Google Scholar 

  • Zoungrana BJ, Conrad C, Thiel M, Amekudzi LK, Da ED (2018) MODIS NDVI trends and fractional land cover change for improved assessments of vegetation degradation in Burkina Faso, West Africa. J Arid Environ 153:66–75

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by Al-Ayen University.

Author information

Authors and Affiliations

Authors

Contributions

Bijay Halder: data curation; formal analysis; methodology; investigation; visualization; writing—original draft, review and editing draft preparation; resources; software. Tiyasha Tiyasha: investigation; visualization; writing—original draft, review and editing draft preparation. Shamsuddin Shahid: supervision; validation; investigation; visualization; writing—original draft, review and editing draft preparation. Zaher Mundher Yaseen: supervision, conceptualization; project administration; writing—review and editing.

Corresponding author

Correspondence to Zaher Mundher Yaseen.

Ethics declarations

Ethical approval

The study is conducted considering the ethical manner advised by the journal.

Consent to participate

Not applicable.

Consent to publish

All authors approve consent to publish the paper.

Conflict of interest

The authors declare no competing interests.

Availability of data and materials

Data will be supplied upon request to the corresponding author.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halder, B., Tiyasha, T., Shahid, S. et al. Delineation of urban expansion and drought-prone areas using vegetation conditions and other geospatial indices. Theor Appl Climatol 149, 1277–1295 (2022). https://doi.org/10.1007/s00704-022-04108-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-022-04108-2

Keywords

Navigation