Skip to main content

Advertisement

Log in

Influence of vegetation cover change on the summer air temperature trend in the Pannonian Basin from 2002 to 2011

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The aim of this study is to examine the impact of the regional vegetation change on the seasonal surface air temperature and is performed using the Max-Planck-Institute Earth System Model. The research area is located in the Pannonian Basin and is one of many regions in which the anthropogenic impact on geophysical changes in the environment is significant. The vegetation system in this region is constantly changing, and its impact on the Earth’s climate system is very complicated to present. The study covers a 10-year period from years 2002 until 2011, and it shows that the change in percentage between certain types of vegetation leads to heating and cooling of surface air during the summer season. The highest cooling is in the northern area of the Pannonian Basin, which is approximately − 0.3 (°C/year) while in the central area is around − 0.1 (°C/year). Warming occurs only in the southern area, where the air heating trend coefficient is 0.1 (°C/year). The largest vegetation cover changes are made in the northern area while smaller ones in the central and southern. These changes in vegetation cover lead to an increase of surface albedo in the northern and central areas, while in the southern there is a decrease. It also has been shown that these changes in vegetation cover affected the surface sensible heat flux and total cloud cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  • Alkama R, Cescatti A (2016) Biophysical climate impact of recent changes in global forest cover. Science 351:600–604. https://doi.org/10.1126/science.aac8083

    Article  Google Scholar 

  • Anav A, Ruti PM, Artale V, Valentini R (2010) Modelling the effects of land-cover changes on surface climate in the Mediterranean region. Clim Res 41:91–104

    Article  Google Scholar 

  • Arakawa A, Lamb VR (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput Phys 17:173–265

    Google Scholar 

  • Arneth A, Sitch S, Bondeau A, Butterbach-Bahl K, Foster P, Gedney N, de Noblet-Ducoudré N, Prentice IC, Sanderson M, Thonicke K, Wania R, Zaehle S (2010) From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere. Biogeosciences 7:121–149

    Article  Google Scholar 

  • Balla G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A (2007) Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci 104:6550–6555

    Article  Google Scholar 

  • Barry RG, Chorley RJ (1992) Atmosphere, Weather & Climate, 6th edn. Routledge, London, p 392

    Google Scholar 

  • Bastos A, Gouveia MC, Trigo MR, Running WS (2013) Analysing the spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on plant productivity in Europe. Biogeosciences 11:3421–3435, 2014. https://doi.org/10.5194/bg-11-3421-2014

    Article  Google Scholar 

  • Berrisford P, Dee DP, Poli P, Brugge R, Fielding K, Fuentes M, Kållberg PW, Kobayashi S, Uppala S, Simmons A (2011) The ERA interim archive. http://www.ecmwf.int/publications/

  • Betts RA (2006) Forcings and feedbacks by land ecosystem changes on climate change. J Phys IV France 139:123–146. https://doi.org/10.1051/jp4:2006139009

    Article  Google Scholar 

  • Betts AK, Ball JH (1997) Albedo over the boreal forest. J Geophys Res 102:28901–28910. https://doi.org/10.1029/96JD03876

    Article  Google Scholar 

  • Bevan LS, Los OS, North JRP (2013) Response of vegetation to the 2003 European drought was mitigated by height. Biogeosciences 11:2897–2908, 2014. https://doi.org/10.5194/bg-11-2897-2014

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks and the climate benefits of forests. Science 320:1444. https://doi.org/10.1126/science.1155121

    Article  Google Scholar 

  • Bright R, Davin E, O’Halloran T et al (2017) Local temperature response to land cover and management change driven by non-radiative processes. Nat Clim Change 7:296–302. https://doi.org/10.1038/nclimate3250

    Article  Google Scholar 

  • Brinkop S, Roeckner E (1995) Sensitivity of a general circulation model to parameterizations of cloud-turbulence interactions in the atmospheric boundary layer. Tellus 47A:197–220

    Article  Google Scholar 

  • Claussen M, Brovkin V, Ganopolski A (2001) Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys Res Lett 28:1011–1014

    Article  Google Scholar 

  • Ellison D, Futter M, Bishop K (2012) On the forest cover – water yield debate: from demand-to supply-side thinking. Glob Change Biol 18:2677–2680. https://doi.org/10.1111/j.1365-2486.2012.02703.x

    Article  Google Scholar 

  • Giorgetta AM, Jungclaus J, Reick HC, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D et al (2013b) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5:572–597. https://doi.org/10.1002/jame.20038

    Article  Google Scholar 

  • Giorgetta AM, Roeckner E, Mauritsen T, Stevens B, Bader J, Crueger T, Esch M, Rast S, Kornblueh L, Schmidt H, Kinne S, Möbis B, Krismer T (2013a) The atmospheric general circulation model ECHAM6, Model description. Tehnical note, Reports on Earth System Science, ISSN 1614–1199

  • Hagemann S (2002) An improved land surface parameter, dataset for global and regional climate models, Max Planck Institute for Meteorology, Report 336

  • Heck P, Lüthi D, Wernli H, Schär C (2001) Climate impacts of European-scale anthropogenic vegetation changes: a sensitivity study using a regional climate model. J Geophys Res. https://doi.org/10.1029/2000JD900673

    Article  Google Scholar 

  • Hurtt GC, Chini PL, Frolking S, Betts AR, Feddema J, Fischer G, Fisk PJ, Hibbard K, Houghton AR, Janetos A, Jones DC, Kindermann G, Kinoshita T, Goldewijk KK, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren PD, Wang PY (2011) Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim Change 109:117–161. https://doi.org/10.1007/s10584-011-0153-2

    Article  Google Scholar 

  • Jackson RB, Randerson TJ, Canadell GJ, Anderson GR, Avissar R, Baldocchi DD, Bonan BG, Caldeira K, Diffenbaugh SN, Field BC, Hungate AB, Jobbágy GE, Kueppers ML, Nosetto DM, Pataki ED (2008) Protecting climate with forests. Environ Res Lett 3:044006. https://doi.org/10.1088/1748-9326/3/4/044006

    Article  Google Scholar 

  • Jeuken A, Siegmund P, Heijboer L, Feichter J, Bengtsson L (1996) On the potential of assimilating meteorological analyses in a global climate model for the purposes of model validation. J Geophys Res 101:16939–16950

    Article  Google Scholar 

  • Jolliffe IT, Stephenson DB (2012) Forecat verification a practitioners’s guide in atmospherics science. Wiley, ISBN 0–471–49759–2

  • Kendall MG (1975) Rank Correlation Methods. Oxford University Press, New York

    Google Scholar 

  • Koster RD, Suarez JM (1992) A comparative analysis of two land surface heterogeneity representations. J Clim 5:1379–1390, American Meteorological Society

    Article  Google Scholar 

  • Krishnamurti NT, Xue J, Bedi SH, Ingles K (1991) Oosterhof D (1991) Physical initialization for numerical weather prediction over the tropics. Tellus 43AB:53–81

    Article  Google Scholar 

  • Lee X, Goulden ML, David Y, Hollinger YD, Barr A, Black A, Bohrer G, Bracho R, Drake B, Gu L, Katul G et al (2011) Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479:384–387. https://doi.org/10.1038/nature10588

    Article  Google Scholar 

  • Lohmann U, Hoose C (2009) Sensitivity studies of different aerosol indirect effects in mixed-phase clouds. Atmos Chem Phys 9:8917–8934. https://doi.org/10.5194/acp-9-8917-2009,2009

    Article  Google Scholar 

  • Lohmann U, Roeckner E (1996) Design and performance of a new cloud microphysics scheme developed for the ECHAM4 general circulation model. Clim Dyn 12(557–572):62

    Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259. https://doi.org/10.2307/1907187

    Article  Google Scholar 

  • MPI-M (Max-Planck-Institut für Meteorologie), Deutsches Klimarechenzentrum (2012) External input data for CMIP5 experiments based on the MPI-ESM earth system model of the Max Planck Institute for Meteorology. World Data Center for Climate (WDCC) at DKRZ. http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CMIP5_MPI-ESM_input

  • Nordeng TE (1994) Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. Technical Memorandum 206, ECMWF, Reading, UK

  • Otto J, Raddatz T, Claussen M (2011) Strength of forest-albedo feedback in mid-Holocene climate simulations. Clim Past 7:1027–1039. https://doi.org/10.5194/cp-7-1027-2011

    Article  Google Scholar 

  • Pielke RA, Adegoke J, Beltran-Przekurat A, Hiemstra CA, Lin J, Nair US, Niyogi D, Nobis TE (2007) An overview of regional land-use and landcover impacts on rainfall. Tellus 59:587–601. https://doi.org/10.1111/j.1600-0889.2007.00251.x

    Article  Google Scholar 

  • Pitman AJ, Cruz TF, de Noblet-Ducoudre N, Cruz TF, Davin LE, Bonan BG, Brovkin V, Claussen M, Delire C, Ganzeveld L, Gayler V, van den Hurk JJMB, Lawrence JP, van der Molen KM, Müller C, Reick HC, Seneviratne IS, Strengers JB, Voldoire A (2009) Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys Res Lett 36:L14814. https://doi.org/10.1029/2009GL039076

    Article  Google Scholar 

  • Pongratz J, Reick C, Raddatz T, Claussen M (2008) A reconstruction of global, agricultural areas and land cover for the last millennium. Glob Biogeochem Cycles 22:GB3018. https://doi.org/10.1029/2007GB003153

    Article  Google Scholar 

  • Pongratz J, Raddatz T, Reick C, Esch M, Claussen M (2009) Radiative forcing from anthropogenic land cover change since A.D. 800. Geophys Res Lett 36:L02709. https://doi.org/10.1029/2008GL036394

    Article  Google Scholar 

  • Port U, Brovkin V, Claussen M (2012) The influence of vegetation dynamics on anthropogenic climate change. Earth Syst Dyn 3:233–243, 201. https://doi.org/10.5194/esd-3-233-2012

    Article  Google Scholar 

  • Rast S, Brokopf R, Cheedela SK, Esch M, Gayler V, Kirchner I, Kornblüh L, Rhodin A, Schmidt H, Schulzweida U, Wieners KH (2013) User manual for ECHAM6. Reports on Earth System Science ISSN 1614–1199 June 21, 2013, (2013–02–26), version echam-6.1.06p3-guide-1.3

  • Reick CH, Raddatz T, Brovkin V, Gayler V (2013) Representation of natural and anthropogenic land cover change in MPI-ESM. J Adv Model Earth Syst 5:459–482. https://doi.org/10.1002/jame.20022

    Article  Google Scholar 

  • Riahi K, Krey V, Rao S, Chirkov V, Fischer G, Kolp P, Kindermann G, Nakicenovic N, Rafai P (2011) RCP-8.5 Exploring the consequence of high emission trajectories. Clim Change 109:33–57. https://doi.org/10.1007/s10584-011-0149-y

    Article  Google Scholar 

  • Rotenberg E, Yakir D (2010) Contribution of semi-arid forests to the climate system. Science 327:451–454

    Article  Google Scholar 

  • Sanchez E, Gaertner MA, Gallardo C, Padorno E, Arribas A, Castro M (2007) Impacts of a change in vegetation description on simulated European summer present-day and future climates. Clim Dyn 29:319–332

    Article  Google Scholar 

  • Schneck R, Mosbrugger V (2011) Simulated climate effects of Southeast Asian deforestation: regional processes and teleconnection mechanisms. J Geophys Res 116:D11116. https://doi.org/10.1029/2010JD015450

    Article  Google Scholar 

  • Stéfanon M, Drobinski P, D’Andrea F, de Noblet-Ducoudré N (2012) Effects of interactive vegetation phenology on the 2003 summer heat waves. J Geophys Res 117:D24103. https://doi.org/10.1029/2012JD018187,2012

    Article  Google Scholar 

  • Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E (2013) Atmospheric component of the MPI-M Earth System Model: ECHAM6. J Adv Model Earth Syst 5:146–172. https://doi.org/10.1002/jame.20015

    Article  Google Scholar 

  • Tang B, Zhao X, Zhao W (2018) Local effects of forests on temperatures across Europe. Remote Sens. https://doi.org/10.3390/rs10040529

    Article  Google Scholar 

  • Teuling AL, Seneviratne IS, Stöckli R, Reichstein M, Moors E, Ciais P, Luyssaert S, Ammann C, van den Hurk B, Bernhofer C, Dellwik E, Gianelle D, Gielen B, Grünwald T, Klumpp K, Montagnani L, Moureaux C, Sottocornola M, Wohlfahrt G (2010) Contrasting response of European forest and grassland energy exchange to heatwaves. Nat Geosci 3:722–727. https://doi.org/10.1038/ngeo950

    Article  Google Scholar 

  • Teuling AL, Taylor MC, Meirink FJ, Melsen AL, Miralles AL, van Heerwaarden CC, Vautard R, Stegehuis IA, Nabuurs GJ, de Arellano JVG (2017) Observational evidence for cloud cover enhancement over western European forests. J Nat Commun 8:14065. https://doi.org/10.1038/ncomms14065

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800

    Article  Google Scholar 

  • Tölle HM, Brell M, Radtke K, Panitz HJ (2018) Sensitivity of European temperature to albedo parameterization in the regional climate model COSMO-CLM linked to extreme land use changes. Front Environ Sci. https://doi.org/10.3389/fenvs.2018.00123

    Article  Google Scholar 

  • Valcke S (2013) The OASIS3 coupler: a European climate modelling community software. Geosci Model Dev 6:373–388. https://doi.org/10.5194/gmd-6-373-2013

    Article  Google Scholar 

  • Vautard R, Cattiaux J, Yiou P, Thépaut JN, Ciais P (2010) Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci. https://doi.org/10.1038/NGEO979

    Article  Google Scholar 

  • Wetzel P, Haak H, Jungclaus J, Maier-Reimer E (2011) Tehnical Note: The Max-Planck-Institute Global Ocean/Sea-Ice Model MPI-OM. https://mpimet.mpg.de/fileadmin/models/MPIOM/DRAFT_MPIOM_TECHNICAL_REPORT.pdf

  • Wulfmeyer V, Flamant C, Behrendt A, Blyth A, Brown A, Dorninger M, Illingworth A, Mascart P, Montani A, Weckwerth T (2011) Advances in the understanding of convective processes and precipitation over low-mountain regions through the Convective and Orographically-induced Precipitation Study (COPS). Q J R Meteorol Soc 137:1–2. https://doi.org/10.1002/qj.799

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Republic Hydro-meteorological Service of Serbia (RHMSS) for providing the meteorological observation data.

Author information

Authors and Affiliations

Authors

Contributions

Albert Ruman: numerical and graphical data processing, text of the research.

Anna Ruman: data collection and text of the research.

Corresponding author

Correspondence to Albert Ruman.

Ethics declarations

Ethics approval

Albert Ruman approval.

Anna Ruman approval.

Consent to participate

Albert Ruman approval.

Anna Ruman approval.

Consent for publication

Albert Ruman approval.

Anna Ruman approval.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruman, A., Ruman, A. Influence of vegetation cover change on the summer air temperature trend in the Pannonian Basin from 2002 to 2011. Theor Appl Climatol 147, 363–380 (2022). https://doi.org/10.1007/s00704-021-03815-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-021-03815-6

Navigation