Skip to main content
Log in

Tropical Atlantic dust and the zonal circulation

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This study examines the factors driving the variability of Saharan dust over the subtropical Atlantic during summer. Monthly tropospheric dust concentrations from satellite-based model assimilation averaged in the area 10–23 N, 30–65 W, are used to create an index over the period 1980–2017. The seasonal cycle peaks in summer and affects tropical cyclones from July to September. Point-to-field regression analysis is performed, and then composites of dusty and clean seasons are analyzed as maps and sections of meteorological fields. The regression reveals significant differences in oceanic trade winds, (detrended) sea surface temperature, and atmospheric convection. Dusty minus clean composites show a zonal overturning circulation with sinking/rising motions over Africa/western Caribbean and lower easterlies/upper westerlies over the subtropical Atlantic. This circulation spreads Saharan dust and warm dry air in the 1–4 km layer westward at ~ 10 m/s over cooler waters, inhibiting convection. Among the factors driving tropospheric dust variability is the Pacific El Niño Southern Oscillation. Composites of dusty and clean hurricane occurrence show a threefold difference in numbers and a tenfold difference in mean power dissipation index. Analysis of a dust event in August 2009 illustrates how wind shear and cool SST conspire to suppress tropical easterly waves. Supplementary work characterizes the dispersion of a dense Saharan dust plume in June 2020.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bakun A, Nelson CS (1991) The seasonal cycle of wind stress curl in subtropical eastern boundary current regions. J Phys Oceanogr 21:1815–1834

    Article  Google Scholar 

  • Banerjee P, Kumar SP (2016) ENSO modulation of interannual variability of dust aerosols over the Northwest Indian Ocean. J Clim 29:1287–1303

    Article  Google Scholar 

  • Barkan J, Kutiel H, Alpert P, Kishcha P (2004) Synoptics of dust intrusion days from the African continent into the Atlantic Ocean. J Geophys Res 109:D08201. https://doi.org/10.1029/2003JD004416

    Article  Google Scholar 

  • Buchard V, 10 coauthors (2017) The MERRA-2 aerosol reanalysis, 1980 onward. Part II: evaluation and case studies. J Climate 30:6851–6872

    Article  Google Scholar 

  • Carton JA, Chepurin GA, Chen L (2018) SODA3: a new ocean climate reanalysis. J Clim 31:6967–6983

    Article  Google Scholar 

  • Chu PC, Ivanov LM, Melnichenko OV, Wells NC (2007) On long baroclinic Rossby waves in the tropical North Atlantic observed from profiling floats. J Geophys Res 112:C05032. https://doi.org/10.1029/2006JC003698

    Article  Google Scholar 

  • Cuesta J, Marsham JH, Parker DJ, Flamant C (2009) Dynamical mechanisms controlling the vertical redistribution of dust and the thermodynamic structure of the West Saharan atmospheric boundary layer during summer. Atmos Sci Lett 10:34–42

    Article  Google Scholar 

  • Ding H, Keenlyside N, Latif M (2009) Seasonal cycle in the upper equatorial Atlantic Ocean. J Geophys Res 114:C09016. https://doi.org/10.1029/2009JC005418

    Article  Google Scholar 

  • Doherty OM, Riemer N, Hameed S (2012) Control of Saharan mineral dust transport to Barbados in winter by the Intertropical Convergence Zone over West Africa. J Geophys Res 117:D19117. https://doi.org/10.1029/2012JD017767

  • Doherty RM, Stevenson DS, Johnson CE, Collins WJ, Sanderson MG (2006) Tropospheric ozone and El Niño–southern oscillation: influence of atmospheric dynamics, biomass burning emissions, and future climate change. J Geophys Res 111:D19304. https://doi.org/10.1029/2005JD006849

    Article  Google Scholar 

  • Drame MS, Ceamanos X, Roujean JL, Boone A, Lafore JP, Carrer D, Geoffroy O (2015) On the importance of aerosol composition for estimating incoming solar radiation: focus on the western African stations of Dakar and Niamey during the dry season. Atmosphere 6:1608–1632

    Article  Google Scholar 

  • Dunion JP, Velden CS (2004) The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull Am Meteorol Soc 85:353–365

    Article  Google Scholar 

  • Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688

    Article  Google Scholar 

  • Engelstaedter S, Washington R (2007) Atmospheric controls on the annual cycle of North African dust. J Geophys Res 112:D03103. https://doi.org/10.1029/2006jd007195

    Article  Google Scholar 

  • Evan AT, Dunion J, Foley JA, Heidinger AK, Velden CS (2006) New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys Res Lett 33:L19813. https://doi.org/10.1029/2006GL026408

    Article  Google Scholar 

  • Evan AT, Flamant C, Gaetani M, Guichard F (2016) The past, present and future of African dust. Nature 531:493–497

    Article  Google Scholar 

  • Foltz GR, McPhaden MJ (2008) Trends in Saharan dust and tropical Atlantic climate during 1980-2006. Geophys Res Lett 35:1–5

    Article  Google Scholar 

  • Gamo M (1996) Thickness of the dry convection and large-scale subsidence above deserts. Bound-Layer Meteorol 79:265–278

    Article  Google Scholar 

  • Garcia-Carreras L, Parker DJ, Marsham JH (2015) The turbulent structure and diurnal growth of the Saharan atmospheric boundary layer. J Atmos Sci 72:693–713

    Article  Google Scholar 

  • Geogdzhayev IV, Mishchenko MI, Terez EI, Terez GA, Gushchin GK (2005) Regional AVHRR-derived climatology of aerosol optical thickness and size. J Geophys Res 110:D23205. https://doi.org/10.1029/2005JD006170

    Article  Google Scholar 

  • Goldenberg SB, Landsea CW, Mestas-Nunez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293:474–479

    Article  Google Scholar 

  • Huang JF, Zhang CD, Prospero JM (2010) African dust outbreaks: a satellite perspective of temporal and spatial variability over the tropical Atlantic Ocean. J Geophys Res 115:D05202. https://doi.org/10.1029/2009JD012516

    Article  Google Scholar 

  • Huneeus N, 29 coauthors (2011) Global dust model intercomparison in AeroCom phase I. Atmos Chem Phys 11:7781–7816

    Article  Google Scholar 

  • Jones C, Mahowald N, Luo C (2003) The role of easterly waves on African desert dust transport. J Climate 16:3617–3628

    Article  Google Scholar 

  • Joyce RJ, Janowiak JE, Arkin PA, Xie PP (2004) cMorph: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5:487–503

    Article  Google Scholar 

  • Jury MR (2017) Caribbean air chemistry and dispersion conditions in the satellite era. Atmosphere 8:151. https://doi.org/10.3390/atmos8080151

    Article  Google Scholar 

  • Jury MR (2018) Climatic modulation of early summer dust emissions over West Africa. J Arid Environ 152:55–68

    Article  Google Scholar 

  • Jury MR, Santiago MJ (2010) Composite analysis of dust impacts on African easterly waves in the MODIS era. J Geophys Res 115:D16213. https://doi.org/10.1029/2009JD013612

    Article  Google Scholar 

  • Jury MR, Whitehall K (2010) Warming of an elevated layer over Africa. Clim Chang 99:229–245

    Article  Google Scholar 

  • Kanamitsu M, co-authors (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Karyampudi VM, Carlson TN (1988) Analysis and Numerical Simulations of the Saharan Air Layer and Its Effect on Easterly Wave Disturbances. J Atmos Sci 45(21):3102–3136

  • Klose M, Shao Y, Karremann MK, Fink AH (2010) Sahel dust zone and synoptic background. Geophys Res Lett 37:L09802. https://doi.org/10.1029/2010GL042816

    Article  Google Scholar 

  • Knippertz P, Todd MC (2010) The central west Saharan dust hot spot and its relation to African easterly waves and extratropical disturbances. J Geophys Res 115:D12117. https://doi.org/10.1029/2009JD012819

    Article  Google Scholar 

  • Molod A, Takacs L, Suarez M, Bacmeister J (2015) Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci Model Dev 8:1339–1356

    Article  Google Scholar 

  • Mote TL, Ramseyer CA, Miller PW (2017) The Saharan air layer as an early rainfall season suppressant in the eastern Caribbean: the 2015 Puerto Rico drought. J Geophys Res Atmos 122:10966–10982

    Article  Google Scholar 

  • Nolan DS, McGauley MG (2012) Tropical cyclogenesis in wind shear: climatological relationships and physical processes. In: Oouchi K, Fudeyasu H (eds) Cyclones: formation, triggers, and control. Nova Science Pub, Happauge, pp 1–34

    Google Scholar 

  • Okin GS, Reheis MC (2002) An ENSO predictor of dust emission in the southwestern United States. Geophys Res Lett 29:1332. https://doi.org/10.1029/2001GL014494

    Article  Google Scholar 

  • Petzold A, Veira A, Mund S, Esselborn M, Kiemle C, Weinzierl B, Hamburger T, Ehret G, Liebke K, Kandler K (2011) Mixing of mineral dust with urban pollution aerosol over Dakar (Senegal): impact on dust physico-chemical and radiative properties. Tellus B 63:619–634

    Article  Google Scholar 

  • Prospero JM, Mayol-Bracero OL (2013) Understanding the transport and impact of African dust on the Caribbean basin. Bull Am Meteorol Soc 94:1329–1337

    Article  Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer absorbing aerosol product. Rev Geophys 40:1002. https://doi.org/10.1029/2000RG000095

    Article  Google Scholar 

  • Randles CA, Silva AM, Buchard V, Colarco PR, Darmenov A, Govindaraju R (2017) The MERRA-2 aerosol reanalysis, 1980 onward. Part I: system description and data assimilation evaluation. J Climate 30:6823–6850

    Article  Google Scholar 

  • Reed KA, Bacmeister JT, Huff JJA, Wu X, Bates SC, Rosenbloom NA (2019) Exploring the impact of dust on North Atlantic hurricanes in a high-resolution climate model. Geophys Res Letters 46:1105–1112

    Article  Google Scholar 

  • Reid JS, Kinney JE, Westphal DL, Holben BN, Welton EJ, Tsay S-C, Eleuterio DP, Campbell JR, Christopher SA, Colarco PR, Jonsson HH, Livingston JM, Maring HB, Meier ML, Pilewskie P, Prospero JM, Reid EA, Remer LA, Russell PB, Savoie DL, Smirnov A, Tanré D (2003) Analysis of measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment. J Geophys Res 108(D19):8586. https://doi.org/10.1029/2002JD002493

  • Ridley DA, Solomon S, Barnes JE, Burlakov VD, Deshler T, Dolgii SI, Herber AB, Nagai T, Neely III RR, Nevzorov AV, Ritter C, Sakai T, Santer BD, Sato M, Schmidt A, Uchino O, Vernier JP (2014) Total volcanic stratospheric aerosol optical depths and implications for global climate change. Geophys Res Lett 41:7763–7769

  • Senghor H, Machu É, Hourdin F, Gaye AT (2017) Seasonal cycle of desert aerosols in western Africa: analysis of the coastal transition with passive and active sensors. Atmos Chem Phys 17:8395–8410

    Article  Google Scholar 

  • Smith RL (1968) Upwelling. Oceanogr Mar Biol Annu Rev 6:11–46

    Google Scholar 

  • Stein AF, Draxler RR, Rolph GD, Stunder BJ, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96:2059–2077

    Article  Google Scholar 

  • Van der Does M, Korte LF, Munday C, Brummer I, Geert-Jan A, Stuut J-B (2016) Modal grain-sizes of Saharan dust in the Atlantic Ocean measured in 7 sediment traps from 2012 to 2013. Pangaea. https://doi.org/10.1594/pangaea.863052

  • Vernier J-P, Thomason LW, Pommereau J-P, Bourassa A, Pelon J, Garnier A, Hauchecorne A, Blanot L, Trepte C, Degenstein D, Vargas F (2011) Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophys Res Lett 38:L12807. https://doi.org/10.1029/2011GL047563

  • Vimont DJ, Kossin JP (2007) The Atlantic meridional mode and hurricane activity. Geophys Res Lett 34:L07709. https://doi.org/10.1029/2007GL029683

    Article  Google Scholar 

  • Washington R, Todd MC (2005) Atmospheric controls on mineral dust emission from the Bodélé depression, Chad: the role of the low level jet. Geophys Res Lett 32:L17701. https://doi.org/10.1029/2005GL023597

    Article  Google Scholar 

  • Wong S, Dessler AE, Mahowald MN, Yang P, Feng Q (2009) Maintenance of lower tropospheric temperature inversion in the Saharan air layer by dust and dry anomaly. J Clim 22:5149–5162

    Article  Google Scholar 

  • Zuluaga MD, Webster PJ, Hoyos CD (2012) Variability of aerosols in the tropical Atlantic Ocean relative to African easterly waves and their relationship with atmospheric and oceanic environments. J Geophys Res 117:D16207. https://doi.org/10.1029/2011JD017181

    Article  Google Scholar 

Download references

Funding

The first author has ongoing support from the SA Dept of Education.

Author information

Authors and Affiliations

Authors

Contributions

The first author conceived the research and analyzed much of the data; the second author provided interpretations.

Corresponding author

Correspondence to Mark R. Jury.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 3700 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jury, M.R., Nieves Jiménez, A.T. Tropical Atlantic dust and the zonal circulation. Theor Appl Climatol 143, 901–913 (2021). https://doi.org/10.1007/s00704-020-03461-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03461-4

Navigation