Skip to main content
Log in

Validation and reconstruction of rain gauge–based daily time series for the entire Amazon basin

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Monitoring the spatio-temporal variability of rainfall regimes in the Amazon basin is difficult because (1) time series of remote sensing–based rainfall estimates are still too short for long-time variability analysis and (2) rain gauge time series are not fully reliable and operational in their current state due to frequent gaps and zero values. The objective of this paper is to introduce a quality control and reconstruction procedure designed to produce a robust database of rain gauge–based daily rainfall in the Amazon basin. Despite the low density and heterogeneous spatial distribution of the rain gauges network, we eliminated unexpected values and produced accurate estimates using spatial and mathematical relationships with neighboring rain gauges. Three reconstruction methods were tested: the nearest neighbor approach (NN), the arithmetic mean with neighboring stations (AM), and the multiple imputation by chained equations used with the predictive mean matching procedure (MICE). The quality of the reconstruction has been assessed through the mean annual rainfall and the mean annual number of rainy days. We concluded that the AM approach performed better at the scale of the whole Amazon basin. This method has then been preferred to reconstruct the whole database of rainfall time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aguilar E, Peterson TC, Obando PR, Frutos R, Retana JA, Solera M, Soley J, García IG, Araujo RM, Santos AR et al (2005) Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J Geophys Res 110(D23):107

    Article  Google Scholar 

  • Barbosa Santos E, Sérgio Lucio P, Silva CM (2015) Precipitation regionalization of the Brazilian Amazon. Atmos Sci Lett 16:185–192

    Article  Google Scholar 

  • Boyard-Micheau J (2013) Prévisibilité potentielle des variables climatiques à impact agricole en Afrique de l’est et application au sorgho dans la région du mt kenya. Thèse de doctorat. Université de Bourgogne, France

    Google Scholar 

  • Brito, A.L., Paix, J.A., Yoshida, M.C.,et al (2014). Extreme rainfall events over the Amazon basin produce significant quantities of rain relative to the rainfall climatology. Atmos Climate Sci, 4: 179–191

    Article  Google Scholar 

  • Brunetti, M., Maugeri, M., and Nanni, T. (2006). Trends of the daily intensity of precipitation in Italy and teleconnections. Il Nuovo Cimento C 105

  • Camberlin P, Boyard-Micheau J, Philippon N, Baron C, Leclerc C, Mwongera C (2012) Climatic gradients along the windward slopes of Mount Kenya and their implication for crop risks. Part 1: climate variability. Int J Climatol 34:2136–2152

    Article  Google Scholar 

  • Campozano L, Sánchez E, Aviles A, Samaniego E (2015) Evaluation of infilling methods for time series of daily precipitation and temperature: the case of the Ecuadorian Andes. Maskana 5:99–115

    Article  Google Scholar 

  • Camps-Valls G, Bruzzone L (2009) Kernel methods for remote sensing data analysis. John Wiley & Sons, United Kingdom

    Book  Google Scholar 

  • Cardenas, R., and Krainski, E.T. (2011). Preenchimentos de falhas em bancos de dados meteorologicos diarios: comparação de abordagens. XVII Congresso Brasileiro de Agrometeorologia, Guarapari-Brasil

  • Carvalho LM, Jones C, Posadas AN, Quiroz R, Bookhagen B, Liebmann B (2012) Precipitation characteristics of the South American monsoon system derived from multiple datasets. J Clim 25:4600–4620

    Article  Google Scholar 

  • Caussinus H, Mestre O (2004) Detection and correction of artificial shifts in climate series. J R Stat Soc: Ser C: Appl Stat 53:405–425

    Article  Google Scholar 

  • Chen J, Del Genio AD, Carlson BE, Bosilovich MG (2008) The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. Part II: Pacific pan-decadal variability. J Clim 21:2634–2650

    Article  Google Scholar 

  • Cressie N, Chan NH (1989) Spatial modeling of regional variables. J Am Stat Assoc 84:393–401

    Article  Google Scholar 

  • Delahaye F, Kirstetter P-E, Dubreuil V, Machado LA, Vila DA, Clark R (2015) A consistent gauge database for daily rainfall analysis over the Legal Brazilian Amazon. J Hydrol 527:292–304

    Article  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc 39:1–38

    Google Scholar 

  • Eischeid JK, Pasteris PA, Diaz HF, Plantico MS, Lott NJ (2000) Creating a serially complete, national daily time series of temperature and precipitation for the western United States. J Appl Meteorol 39:1580–1591

    Article  Google Scholar 

  • Espinoza Villar JC, Ronchail J, Guyot JL, Cochonneau G, Naziano F, Lavado W, De Oliveira E, Pombosa R, Vauchel P (2009) Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int J Climatol 29:1574–1594

    Article  Google Scholar 

  • Espinoza JC, Chavez S, Ronchail J, Junquas C, Takahashi K, Lavado W (2015) Rainfall hotspots over the southern tropical Andes: spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Resour Res 51:3459–3475

    Article  Google Scholar 

  • Figueroa SN, Nobre CA (1990) Precipitation distribution over central and western tropical South America. Climanalise 5:36–45

    Google Scholar 

  • Getirana AC, Espinoza JCV, Ronchail J, Rotunno Filho OC (2011) Assessment of different precipitation datasets and their impacts on the water balance of the Negro River basin. J Hydrol 404:304–322

    Article  Google Scholar 

  • Glasson-Cicognani, M., and Berchtold, A. (2010). Imputation des données manquantes: Comparaison de différentes approches. In 42èmes Journées de Statistique, Marseille-France

  • Hansen JW, Challinor A, Ines A, Wheeler T, Moron V (2006) Translating climate forecasts into agricultural terms: advances and challenges. Clim Res 33:27–41

    Article  Google Scholar 

  • Juárez RIN, Hodnett MG, Fu R, Goulden ML, von Randow C (2007) Control of dry season evapotranspiration over the Amazonian Forest as inferred from observations at a southern Amazon Forest site. J Clim 20:2827–2839

    Article  Google Scholar 

  • Liebmann B, Allured D (2005) Daily precipitation grids for South America. Bull Am Meteorol Soc 86:1567–1570

    Article  Google Scholar 

  • Liebmann B, Marengo J (2001) Interannual variability of the rainy season and rainfall in the Brazilian Amazon basin. J Clim 14:4308–4318

    Article  Google Scholar 

  • Little RJA, Rubin DB (2002) Statistical analysis with missing data. John Wiley & Sons, Inc, USA

    Book  Google Scholar 

  • Makhuvha T, Pegram G, Sparks R, Zucchini W (1997a) Patching rainfall data using regression methods: 1. Best subset selection, EM and pseudo-EM methods: theory. J Hydrol 198:289–307

    Article  Google Scholar 

  • Makhuvha T, Pegram G, Sparks R, Zucchini W (1997b) Patching rainfall data using regression methods. 2. Comparisons of accuracy, bias and efficiency. J Hydrol 198:308–318

    Article  Google Scholar 

  • Mestre O, Gruber C, Prieur C, Caussinus H, Jourdain S (2011) SPLIDHOM: a method for homogenization of daily temperature observations. J Appl Meteorol Climatol 50:2343–2358

    Article  Google Scholar 

  • Moron V, Robertson AW, Ward MN, Camberlin P (2007) Spatial coherence of tropical rainfall at the regional scale. J Clim 20:5244–5263

    Article  Google Scholar 

  • Ronchail J, Cochonneau G, Molinier M, Guyot J-L, De Miranda Chaves AG, Guimarães V, de Oliveira E (2002) Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic Oceans. Int J Climatol 22:1663–1686

    Article  Google Scholar 

  • Silva V, Kousky V, Shi W, Higgins RW (2007) An improved gridded historical daily precipitation analysis for Brazil. J Hydrometeorol 8:847–861

    Article  Google Scholar 

  • Simões Reibota M, Gan MA, Porfirio da Rocha R, Ambrizzi T (2010) Regimes de precipitacao na America do sul. Rev Bras Meteorol 25:185–204

    Article  Google Scholar 

  • van Buuren S, Groothuis-Oudshoorn K (2011) MICE: multivariate imputation by chained equations in R. J Stat Softw 45:1–68

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI, García-Vera MA, Stepanek P (2010) A complete daily precipitation database for Northeast Spain: reconstruction, quality control, and homogeneity. Int J Climatol 30:1146–1163

    Article  Google Scholar 

  • Williams E, Dall’ Antonia A, Dall’ Antonia V, de Almeida JM, Suarez F, Liebmann B, Malhado ACM (2005) The drought of the century in the Amazon basin: an analysis of the regional variation of rainfall in South America in 1926. Acta Amazon 35:231–238

    Article  Google Scholar 

  • WMO (1989). Calculation of monthly and annual 30 year standard normal (World Meteorological Organization)

  • WMO (2007). Guide to the global observing system (World Meteorological Organization)

  • WMO (2011). Guide des pratiques climatologiques (World Meteorological Organization)

Download references

Acknowledgments

The authors would like to express their special thanks to Naurinete J. C. Barreto and George Ulguim Pedra for their help and discussions from the Meteorology Department of the Brazilian National Institute for the Space Research (INPE) and Cláudio Moisés Santos E. Silva from the Centro de Ciências Exatas e da Terra (CCET) in Natal University (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Michot.

Additional information

The artwork was created with R-cran, QGis, and Matlab software.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michot, V., Arvor, D., Ronchail, J. et al. Validation and reconstruction of rain gauge–based daily time series for the entire Amazon basin. Theor Appl Climatol 138, 759–775 (2019). https://doi.org/10.1007/s00704-019-02832-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-019-02832-w

Navigation