Skip to main content

Advertisement

Log in

Biogeographical drivers of ragweed pollen concentrations in Europe

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The drivers of spatial variation in ragweed pollen concentrations, contributing to severe allergic rhinitis and asthma, are poorly quantified. We analysed the spatiotemporal variability in 16-year (1995–2010) annual total (66 stations) and annual total (2010) (162 stations) ragweed pollen counts and 8 independent variables (start, end and duration of the ragweed pollen season, maximum daily and calendar day of the maximum daily ragweed pollen counts, last frost day in spring, first frost day in fall and duration of the frost-free period) for Europe (16 years, 1995–2010) as a function of geographical coordinates. Then annual total pollen counts, annual daily peak pollen counts and date of this peak were regressed against frost-related variables, daily mean temperatures and daily precipitation amounts. To achieve this, we assembled the largest ragweed pollen data set to date for Europe. The dependence of the annual total ragweed pollen counts and the eight independent variables against geographical coordinates clearly distinguishes the three highly infected areas: the Pannonian Plain, Western Lombardy and the Rhône-Alpes region. All the eight variables are sensitive to longitude through its temperature dependence. They are also sensitive to altitude, due to the progressively colder climate with increasing altitude. Both annual total pollen counts and the maximum daily pollen counts depend on the start and the duration of the ragweed pollen season. However, no significant changes were detected in either the eight independent variables as a function of increasing latitude. This is probably due to a mixed climate induced by strong geomorphological inhomogeneities in Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen TB (1991) A model to predict the beginning of the pollen season. Grana 30:269–275

    Article  Google Scholar 

  • ARIA (Allergic Rhinitis and its Impact on Asthma) (2008) Update. In collaboration with the World Health Organization, GA2LEN and AllerGen. http://www.whiar.org/docs/ARIA-Report-2008.pdf

  • Ariano R, Canonica GW, Passalacqua G (2010) Possible role of climate changes in variations in pollen seasons and allergic sensitizations during 27 years. Ann Allergy Asthma Immunol 104:215–222

    Article  Google Scholar 

  • Asher MI, Montefort S, Björkstén B, CKW L, Strachan DP, Weiland SK, the ISAAC Phase Three Study Group et al (2006) Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC phases one and three repeat multicountry cross-sectional surveys. Lancet 368(9537):733–743

    Article  Google Scholar 

  • Béres I, Novák R, Hoffmanné Pathy ZS, Kazinczi G (2005) Az ürömlevelű parlagfű (Ambrosia artemisiifolia L.) elterjedése, morfológiája, biológiája, jelentősége és a védekezés lehetőségei. [Distribution, morphology, biology and importance of common ragweed (Ambrosia artemisiifolia L.) and protection facilities.] Gyomnövények. Gyomirtás 6:1–48 (in Hungarian)

    Google Scholar 

  • Bonini M, Pini A, Travaglini A, Ugolotti M, Voltolini S, Zanca M et al (2014) Diffusion and trend of ragweed pollen in Italy. Third International Ragweed Conference, April 3rd–4th, 2014, Rho (Milan), Italy, Session VI, poster, p. 65. Ambrosia day, 2014—Ragweed allergy: 15 years of prevention. April 4th, 2014, Rho (Milan), Italy. Eur J Aerobiol Environ Med 2:65 (Official Journal of AIA-ISDE)

    Google Scholar 

  • Bora GY, Nemerkényi A (1994) Magyarország földrajza. (Geography of Hungary). Nemzeti Tankönyvkiadó, Budapest (in Hungarian)

    Google Scholar 

  • Bullock JM, Chapman D, Schafer S, Roy D, Girardello M, Haynes T et al (2010) Assessing and controlling the spread and the effects of common ragweed in Europe. Final report: ENV.B2/ETU/2010/0037. Natural Environment Research Council, UK 456 p. https://circabc.europa.eu/sd/d/d1ad57e8-327c-4fdd-b908-dadd5b859eff/FinalFinalReport.pdf

    Google Scholar 

  • Burbach GJ, Heinzerling LM, Röhnelt C, Bergmann KC, Behrendt H, Zuberbier T (2009) Ragweed sensitization in Europe—GA2LEN study suggests increasing prevalence. Allergy 64:664–665

    Article  Google Scholar 

  • Cecchi L, Testi S, Campi P, Orlandini S (2010) Long-distance transport of ragweed pollen does not induce new sensitizations in the short term. Aerobiologia 26:351–352

    Article  Google Scholar 

  • Chapman DS, Haynes T, Beal S, Essl F, Bullock JM (2014) Phenology predicts the native and invasive range limits of common ragweed. Glob Chang Biol 20:192–202

    Article  Google Scholar 

  • Chapman DS, Makra L, Albertini R, Bonini M, Páldy A, Rodinkova V et al (2016) Modelling the introduction and spread of non-native species: international trade and climate change drive ragweed invasion. Glob Chang Biol 22:3067–3079

    Article  Google Scholar 

  • Charalampopoulos A, Damialis A, Tsiripidis I, Mavrommatis T, Halley JM, Vokou D (2013) Pollen production and circulation patterns along an elevation gradient in Mt Olympos (Greece) National Park. Aerobiologia 29:455–472

    Article  Google Scholar 

  • Chauvel B, Dessaint F, Cardinal-Legrand C, Bretagnolle F (2006) The historical spread of Ambrosia artemisiifolia L. in France from herbarium records. J Biogeogr 33:665–673

    Article  Google Scholar 

  • Chun YJ, Le Corre V, Bretagnolle F (2011) Adaptive divergence for a fitness-related trait among invasive Ambrosia artemisiifolia populations in France. Mol Ecol 20:1378–1388

    Article  Google Scholar 

  • Cunze S, Leiblein MC, Tackenberg O (2013) Range expansion of Ambrosia artemisiifolia in Europe is promoted by climate change. Ecology Article ID 610126

  • Dahl Å, Galán C, Hajkova L, Pauling A, Sikoparija B, Smith M et al 2013 The onset, course and intensity of the pollen season. In: Allergenic pollen. A review of the production, release, distribution and health impacts. pp 29–70

  • D'Amato G, Liccardi G, D'Amato M, Holgate S (2005) Environmental risk factors and allergic bronchial asthma. Clin Exp Allergy 35:1113–1124

    Article  Google Scholar 

  • Déchamp C, Rimet ML, Méon H, Deviller P (1997) Parameters of ragweed pollination in the Lyon’s area (France) from 14 years of pollen counts. Aerobiologia 13:275–279

    Article  Google Scholar 

  • Deen W, Hunt T, Swanton CJ (1998) Influence of temperature, photoperiod, and irradiance on the phenological development of common ragweed (Ambrosia artemisiifolia). Weed Sci 46:561–568

    Google Scholar 

  • Essl F, Dullinger S, Kleinbauer I (2009) Changes in the spatio-temporal patterns and habitat preferences of Ambrosia artemisiifolia during its invasion of Austria. Preslia 81:119–133

    Google Scholar 

  • Frenz DA (2001) Interpreting atmospheric pollen counts for use in clinical allergy: allergic symptomology. Ann Allergy Asthma Immunol 86:150–157

    Article  Google Scholar 

  • Frenz DA, Palmer MA, Hokanson JM, Scamehorn RT (1995) Seasonal characteristics of ragweed pollen dispersal in the United States. Ann Allergy Asthma Immunol 75:417–422

    Google Scholar 

  • Galán C, Cariňanos P, García-Mozo H, Alcázar P, Domínguez-Vilches E (2001) Model for forecasting Olea europaea L. airborne pollen in South-West Andalusia, Spain. Int J Biometeorol 45:59–63

    Article  Google Scholar 

  • Galán C, Smith M, Thibaudon M, Frenguelli G, Oteros J, Gehrig R, EAS QC Working Group et al (2014) Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia 30(4):385–395

    Article  Google Scholar 

  • Gellert W, Gottwald S, Hellwich M, Kästner H, Küstner H (1989) The VNR concise encyclopedia of mathematics, 2nd ed., Chapter 12. Van Nostrand Reinhold, New York

    Google Scholar 

  • Gladieux P, Giraud T, Kiss L, Genton BJ, Jonot O, Shykoff JA (2011) Distinct invasion sources of common ragweed (Ambrosia artemisiifolia) in Eastern and Western Europe. Biol Invasions 13:933–944

    Article  Google Scholar 

  • Hamaoui-Laguel L, Vautard R, Liu L, Solmon F, Viovy N, Khvorostyanov D et al (2015) Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe. Nat Clim Chang 5:766–772

    Article  Google Scholar 

  • Harsányi E (2009) Parlagfű és allergia. (Ragweed and allergy). Növényvédelem 45:454–458 (in Hungarian)

    Google Scholar 

  • Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265

    Article  Google Scholar 

  • Horváth F, Dobolyi ZK, Morschhauser T, Lőkös L, Karas L, Szerdahelyi T (1995) FLÓRA adatbázis 1.2. (Flora database 1.2.) MTA-ÖBKI, Vácrátót. 267 p. (in Hungarian)

  • IPCC, Intergovernmental Panel on Climate Change (2013) Summary for policymakers. Climate change 2013. In: Stocker TF, Qin D, Plattner GP, MMB T, Allen SK, Boschung J et al (eds) The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jochner S, Ziello C, Boc A, Estrella N, Buters J, Weichenmeier I et al (2012) Spatio-temporal investigation of flowering dates and pollen counts in the topographically complex Zugspitze area on the German-Austrian border. Aerobiologia 28:541–556

    Article  Google Scholar 

  • Kadocsa E, Juhász M (2002) Study of airborne pollen composition and allergen spectrum of hay fever patients in South Hungary (1990-1999). Aerobiologia 18:203–209

    Article  Google Scholar 

  • Kadocsa E, Bittera L, Juhász M (1991) Pollenszámlálás alapján végzett bőrtesztek eredményei nyárvégi szezonalitású rhinitis allergicás betegeken. (Results of pollen count related skin prick tests on patients suffering in rhinitis allergy in the post summer season). Orv Hetil 32:1589–1591 (in Hungarian)

    Google Scholar 

  • Käpylä M, Penttinen A (1981) An evaluation of the microscopial counting methods of the tape in Hirst–Burkard pollen and spore trap. Grana 20:131–141

    Article  Google Scholar 

  • Karrer G, Skjøth CA, Šikoparija B, Smith M, Berger U, Essl F (2015) Ragweed (Ambrosia) pollen source inventory for Austria. Sci Total Environ 523:120–128

    Article  Google Scholar 

  • Krämer U, Koch T, Ranft U, Ring J, Behrendt H (2000) Traffic-related air pollution is associated with atopy in children living in urban areas. Epidemiology 11:64–70

    Article  Google Scholar 

  • Kumar M (1988) World geodetic system 1984: a modern and accurate global reference frame. Mar Geod 12:117–126

    Article  Google Scholar 

  • Laaidi M, Chinet T, Aegerter P (2011) Allergies au pollen, pollution et climat: revue de la littérature. (Pollen allergies, pollution and climate: literature review). Rev Fr Allergol 51:622–628 (in French)

    Article  Google Scholar 

  • Leiblein-Wild MC, Tackenberg O (2014) Phenotypic variation of 38 European Ambrosia artemisiifolia populations measured in a common garden experiment. Biol Invasions 16:2003–2015

    Article  Google Scholar 

  • Lu Z, Chen X (2002) Spatial nonparametric regression estimation: non-isotropic case. Acta Math Aplicatae Sin Engl Ser 18:641–656

    Article  Google Scholar 

  • Makra L, Juhász M, Béczi R, Borsos E (2005) The history and impacts of airborne Ambrosia (Asteraceae) pollen in Hungary. Grana 44:57–64

    Article  Google Scholar 

  • Makra L, Sánta T, Matyasovszky I, Damialis A, Karatzas K, Bergmann KC et al (2010) Airborne pollen in three European cities: detection of atmospheric circulation pathways by applying three-dimensional clustering of backward trajectories. J Geophys res-Atmos 115:D24220. doi:10.1029/2010JD014743

    Article  Google Scholar 

  • Makra L, Matyasovszky I, Tusnády G, Ziska LH, Csépe Z, Nyúl LG et al (2015) Airborne ragweed pollen in Europe: maps of ragweed pollen concentrations and ragweed pollen related characteristics based on the largest data sets. Manuscript

  • Mihály B, Botta-Dukát Z, (eds.) (2004) Biológiai inváziók Magyarországon. Özönnövények. (Biological invasions in Hungray. Invasive plants.) A KvVM Természetvédelmi Hivatalának Tanulmánykötetei 9. (Series of the Ministry of Environment and Water 9.) TermészetBÚVÁR Alapítvány Kiadó, Budapest (in Hungarian)

  • Nikolić T, Mitić B, Milašinović B, Jelaska SD (2013) Invasive alien plants in Croatia as a threat to biodiversity of South-Eastern Europe: distributional patterns and range size. CR Biol 336:109–121

    Article  Google Scholar 

  • Nilsson S, Persson S (1981) Tree pollen spectra in the Stockholm region (Sweden), 1973-1980. Grana 20:179–182

    Article  Google Scholar 

  • Oswalt ML, Marshall GD (2008) Ragweed as an example of worldwide allergen expansion. Allergy Asthma Clin Immunol 4:130–135

    Article  Google Scholar 

  • Peterson B, Saxon A (1996) Global increases in allergic respiratory disease: the possible role of diesel exhaust particles. Ann Allergy Asthma Immunol 77:263–270

    Article  Google Scholar 

  • Pyšek P, Chytrý M, Pergl J, Sadlo J, Wild J (2012) Plant invasions in the Czech Republic: current state, introduction dynamics, invasive species and invaded habitats. Preslia 84:575–629 Special Issue: SI

    Google Scholar 

  • Recio M, Docampo S, García-Sánchez J, Trigo MM, Melgar M, Cabezudo B (2010) Influence of temperature, rainfall and wind trends on grass pollination in Malaga (western Mediterranean coast). Agric for Meteorol 150:931–940

    Article  Google Scholar 

  • Reznik SY (2009) L'ambroisie à feuilles d'armoise (Ambrosia artemisiifolia L.) en Russie: propagation, distribution, abondance, dangerosité et mesures de contrôle (Common ragweed (Ambrosia artemisiifolia L.) in Russia: spread, distribution, abundance, harmfulness, and control measures). Ambrosie 26:88–97 (in French)

    Google Scholar 

  • Rodinkova VV (2014) Airborne pollen spectrum of Dnіpropetrovsk city as a basis of hay fever control. Visnyk of Dnipropetrovsk University. Biol Med 3(106):3–9

    Google Scholar 

  • Rodinkova V, Palamarchuk O, Kremenska L (2012) The most abundant Ambrosia pollen count is associated with the southern, eastern and the northern-eastern Ukraine. Alergol Immunol 9(2–3):181

    Google Scholar 

  • Rodríguez-Rajo FJ, Aira MJ, Fernández-González M, Seijo C, Jato V (2011) Recent trends in airborne pollen for tree species in Galicia, NW Spain. Clim res 48:281–291

    Article  Google Scholar 

  • Rogers C, Wayne PM, Macklin EA, Muilenberg ML, Wagner CJ, Epstein PR et al (2006) Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environ Health Perspect 114(6):865–869

    Article  Google Scholar 

  • Siegal S, Castellan NJ Jr (1998) Nonparametric statistics for the behavioral sciences, 2nd edn. McGraw-Hill, New York ISBN 0–07–057357-3

    Google Scholar 

  • Silvers WS, Ledoux RA, Dolen WK, Morrison MR, Nelson HS, Weber RW (1992) Aerobiology of the Colorado Rockies—pollen count comparisons between Vail and Denver, Colorado. Ann Allergy 69:421–426

    Google Scholar 

  • Sinnott RW (1984) Virtues of the Haversine. Sky Telescope 68(2):159

    Google Scholar 

  • Skjøth CA, Smith M, Šikoparija B, Stach A, Myszkowska D, Kasprzyk I et al (2010) A method for producing airborne pollen source inventories: an example of Ambrosia (ragweed) on the Pannonian Plain. Agric for Meteorol 150:1203–1210

    Article  Google Scholar 

  • Smith M, Jäger S, Berger U, Šikoparija B, Hallsdottir M, Saulienė I et al (2014) Geographic and temporal variations in pollen exposure across Europe. Allergy 69:913–923

    Article  Google Scholar 

  • Storkey J, Stratonovitch P, Chapman DS, Vidotto F, Semenov MA (2014) A process-based approach to predicting the effect of climate change on the distribution of an invasive allergenic plant in Europe. PLoS One 9(2):e88156. doi:10.1371/journal.pone.0088156

    Article  Google Scholar 

  • Thibaudon M, Monnier S (2015) European Information pollen trap. RNSA, Réseau National De Surveillance Aérobiologique, pp 1–13. (http://www.pollenstiftung.de/fileadmin/pid/images/news/EuropeanInformationPolleTrap-5_April_2015.pdf)

  • Thibaudon M, Šikoparija B, Oliver G, Smith M, Skjøth CA (2014) Ragweed pollen source inventory for France—the second largest centre of Ambrosia in Europe. Atmos Environ 83:62–71

    Article  Google Scholar 

  • Ziello C, Sparks TH, Estrella N, Belmonte J, Bergmann KC, Bucher E et al (2012) Changes to airborne pollen counts across Europe. PLOS One 7(4):e34076. doi:10.1371/journal.pone.0034076

    Article  Google Scholar 

  • Zink K, Vogel H, Vogel B, Magyar D, Kottmeier C (2012) Modeling the dispersion of Ambrosia artemisiifolia L. pollen with the model system COSMO-ART. Int J Biometeorol 56:669–680

    Article  Google Scholar 

  • Ziska LH (2014) Crop systems and global change laboratory, USDA-ARS, Beltsville, Maryland, USA. In: Ziska LH, Dukes JS (eds) Invasive species and global climate change. Part IV. Management: control and adaptation. Climate, CO2 and invasive weed management. Chapter 18. CAB International, Wallingford, pp 293–304

    Google Scholar 

  • Ziska LH, Beggs PJ (2012) Anthropogenic climate change and allergen exposure: the role of plant biology. Allergy Clin Immunol 129:27–32

    Article  Google Scholar 

  • Ziska LH, George K, Frenz DA (2007) Establishment and persistence of common ragweed (Ambrosia artemisiifolia L.) in disturbed soil as a function of an urban-rural macro-environment. Glob Chang Biol 13:266–274

    Article  Google Scholar 

  • Ziska L, Knowlton K, Rogers C, Dalan D, Tierney N, Elder MA (2011) Recent warming by latitude associated with increased length of ragweed pollen season in central North America. Proc Natl Acad Sci U S A 108:4248–4251

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like express their thanks to Lewis H. Ziska (Crop Systems and Global Change Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA) for his valuable advice and suggestions. The authors would also like to thank Tamás Göbölyös Bozsák (University of Szeged, Faculty of Agriculture, Hódmezővásárhely, Hungary) for his useful help. Lastly, the authors would like to thank the European Aeroallergen Network (EAN, https://ean.polleninfo.eu/Ean) for providing ragweed pollen data for Europe, and the Italian Association of Aerobiology for providing pollen data for Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Makra.

Additional information

In memoriam István Matyasovszky

Appendix

Appendix

Table 3 Abbreviations of the names and the geographical coordinates of the 66 stations used in the study, comprising 16-year (1995–2010) annual total ragweed pollen counts (stations are in longitudinal order)
Table 4 Abbreviations of the names and the geographical coordinates of the 162 stations used in the study involving total annual ragweed pollen counts for the year 2010 (stations are in longitudinal order)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matyasovszky, I., Makra, L., Tusnády, G. et al. Biogeographical drivers of ragweed pollen concentrations in Europe. Theor Appl Climatol 133, 277–295 (2018). https://doi.org/10.1007/s00704-017-2184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-017-2184-8

Navigation