Skip to main content
Log in

Carbon dioxide seasonality in dynamically ventilated caves: the role of advective fluxes

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The seasonality in cave CO2 levels was studied based on (1) a new data set from the dynamically ventilated Comblain-au-Pont Cave (Dinant Karst Basin, Belgium), (2) archive data from Moravian Karst caves, and (3) published data from caves worldwide. A simplified dynamic model was proposed for testing the effect of all conceivable CO2 fluxes on cave CO2 levels. Considering generally accepted fluxes, i.e., the direct diffusive flux from soils/epikarst, the indirect flux derived from dripwater degassing, and the input/output fluxes linked to cave ventilation, gives the cave CO2 level maxima of 1.9 × 10−2 mol m−3 (i.e., ∼ 440 ppmv), which only slightly exceed external values. This indicates that an additional input CO2 flux is necessary for reaching usual cave CO2 level maxima. The modeling indicates that the additional flux could be a convective advective CO2 flux from soil/epikarst driven by airflow (cave ventilation) and enhanced soil/epikarstic CO2 concentrations. Such flux reaching up to 170 mol s−1 is capable of providing the cave CO2 level maxima up to 3 × 10−2 mol m−3 (70,000 ppmv). This value corresponds to the maxima known from caves worldwide. Based on cave geometry, three types of dynamic caves were distinguished: (1) the caves with the advective CO2 flux from soil/epikarst at downward airflow ventilation mode, (2) the caves with the advective soil/epikarstic flux at upward airflow ventilation mode, and (3) the caves without any soil/epikarstic advective flux. In addition to CO2 seasonality, the model explains both the short-term and seasonal variations in δ13C in cave air CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AIFE :

advective input flux from soils/epikarst

BC :

Balcarka Cave

CO 2 :

carbon dioxide

C-PC :

Comblain-au-Pont Cave

DAF :

downward airflow

KC :

Kateřinská Cave

LE :

lower entrance

MK :

Moravian Karst

PC :

Punkevní Caves

S-ŠC :

Sloup-Šošůvka Caves

UAF :

upward airflow

UE :

upper entrance

ZC :

Zazděná Cave

c CO2 :

carbon dioxide concentration

c cave :

carbon dioxide concentration in the cave atmosphere

c 0 cave :

initial carbon dioxide concentration in the cave atmosphere

c ss cave :

carbon dioxide steady state concentration in the cave atmosphere

c EK :

carbon dioxide concentration in soils/epikarst

c ext :

carbon dioxide concentration in external atmosphere

∆c :

carbon dioxide concentration gradient

D :

carbon dioxide diffusion coefficient

D air :

carbon dioxide diffusion coefficient in free air

D EK :

carbon dioxide diffusion coefficint in karst bedrock

D soil :

carbon dioxide diffusion coefficient in soil

ε :

air-filled porosity

Φ :

total porosity

I :

water infiltration

j :

carbon dioxide flux

j adv :

advective carbon dioxide flux

j in adv (EKO) :

advective input carbon dioxide flux through soil/epikarst

j in adv (FO) :

advective carbon dioxide influx through free entrance/opening from exterior

j out adv (tot) :

advective output carbon dioxide flux from the cave

j dif :

diffusive carbon dioxide flux

j in dif(EK) :

diffusive carbon dioxide flux into the cave from soil/epikarst

j deg :

carbon dioxide flux from one liter of dripwater by degassing

\( {j}_{deg}^{in} \) :

total carbon dioxide flux into the cave derived from dripwater degassing

∆L :

overburden thickness

n CO2 :

total content of carbon dioxide in cave atmosphere

P :

barometric pressure

P CO2 :

carbon dioxide partial pressure

(C) P CO2 :

carbon dioxide partial pressure in the cave atmosphere

(EK) P CO2 :

carbon dioxide partial pressure in soil/epikarst

(W) P CO2 :

carbon dioxide partial pressure in the water

R :

the universal gas constant

S deg :

total area through which water enters the cave

S dif :

total diffusion area

t :

time

T :

temperature

T ext :

temperature in external atmosphere

T cave :

temperature in cave atmosphere

ΔT :

temperature difference between cave and external atmosphere

τ resp :

cave response time

V cave :

cave total volume

v :

volumetric velocity of airflow

v in EKO :

volumetric velocity of the airflow through the entrance/opening in soil/epikarst

v in FO :

volumetric velocity of airflow through free entrance/opening from the exterior

v tot :

volumetric velocity of airflow through the cave

References

  • Badino G (2010) Underground meteorology – “What’s the weather underground?“. Acta Carsol 39(3):427–448

    Article  Google Scholar 

  • Balák I, Jančo J, Štefka L, Bosák P (1999) Agriculture and nature conservation in the Moravian Karst (Czech Republic). Int J Speleol 28B:71–88

    Article  Google Scholar 

  • Baldini JUL, Baldini LM, McDermott F, Clipson N (2006) Carbon dioxide sources, sinks, and spatial variability in shallow temperatre zone caves: evidence from Ballynamintra Cave, Ireland. J Cave Karst Stud 68:4–11

    Google Scholar 

  • Baldini JUL, McDermott F, Hoffmann DL, Richards DA, Clipson N (2008) Very high-frequency and seasonal cave atmosphere PCO2 variability: implications for stalagmite growth and oxygen isotope-based paleoclimate records. Earth Planet Sci Lett 272:118–129

    Article  Google Scholar 

  • Batiot-Guilhe C, Seidel JL, Jourde H, Hébrard O, Bailly-Comte V (2007) Seasonal variations of CO2 and 222Rn in a mediterranean sinkhole – spring (Causse d’Aumelas, SE France). Int J Speleol 36(1):51–56

    Article  Google Scholar 

  • Benavente J, Vadillo I, Carrasco F, Soler A, Liñán C, Moral F (2010) Air carbon dioxide contents in the vadose zone of a Mediterranean karst. Vadose Zone J 9(1):126–136

    Article  Google Scholar 

  • Bharatdwaj K (2006) Physical geography: oceanography. Discovery Publishing Group, New Delhi

    Google Scholar 

  • Blecha M, Faimon J (2014) Spatial and temporal variations in carbon dioxide (CO2) concentrations in selected soils of the Moravian Karst (Czech Republic). Carbonates Evaporites 29(4):395–408

    Article  Google Scholar 

  • Boch R, Spötl C, Frisia S (2011) Origin and palaeoenvironmental significance of lamination in stalagmites from Katerloch Cave, Austria. Sedimentology 58:508–531

    Article  Google Scholar 

  • Bourges F, Mangin A, d’Hulst D (2001) Le gaz carbonique dans la dynamique de l’atmosphére des cavités karstiques: l’exemple de l’Aven d’Orgnac (Ardéche). Carbon dioxide in karst cavity atmosphere dynamics: the example of the Aven d’Orgnac (Ardéche). Earth Planet Sci 333:685–692

    Google Scholar 

  • Bourges F, Genthon P, Gent D, Lorblanchet M, Mauduit E, d’Hulst D (2014) Conservation of prehistoric caves and stability of their inner climate: lessons from chauvet and other French caves. Sci Total Environ 493:79–81

    Article  Google Scholar 

  • Buecher RH (1999) Microclimate study of Kartchner Caverns, Arizona. J Cave Karst Stud 61:108–120

    Google Scholar 

  • Casteel RC, Banner JL (2015) Temperature-driven seasonal calcite growth and drip water trace element variations in a well-ventilated Texas cave: implications for speleothem paleoclimate studies. Chem Geol 392:43–58

    Article  Google Scholar 

  • Christoforou CS, Salmon LG, Cass GR (1996) Air exchange within the Buddhist cave temples at Yungang, China. Atmos Environ 30:3995–4006

    Article  Google Scholar 

  • Cowan BD, Osborne MC, Banner JL (2013) Temporal variability of cave-air CO2 in central Texas. J Cave Karst Stud 75(1):38–50

    Article  Google Scholar 

  • Davidson EA, Trumbore SE (1995) Gas diffusivity and production of CO2 in deep soils of the eastern Amazon. Tellus Ser B-Chem Phys Meteorol 47(5):550–565

    Article  Google Scholar 

  • Denis A, Lastennet R, Huneau F, Malaurent P (2005) Identification of functional relationship between atmospheric pressure and CO2 in the cave of Lascaux using the concept of entropy of curves. Geophys Res Lett 32, L05810

    Article  Google Scholar 

  • Dragovich D, Grose J (1990) Impact of tourists on carbon dioxide levels at Jenolan Caves, Australia: an examination of microclimatic constraints on tourist cave management. Geoforum 21:111–120

    Article  Google Scholar 

  • Dreybrodt W (1999) Chemical kinetics, speleothem growth and climate. Boreas 28:347–356

    Article  Google Scholar 

  • Dreybrodt W, Scholz D (2011) Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems: From soil water to speleothem calcite. Geochim Cosmochim Acta 75:734–752

    Article  Google Scholar 

  • Dueñas C, Fernández MC, Cañete S, Carretero J, Liger E (1999) 222Rn concentrations, natural flow rate and the radiation exposure levels in the Nerja Cave. Atmos Environ 33:501–510

    Article  Google Scholar 

  • Ek C (1979) Variations saisonnières des teneurs en CO2 d’une grotte belge: le Trou Joney à Comblain-au-Pont. Annales de la Société géologique de Belgique 102:71–75

    Google Scholar 

  • Ek C, Gewelt M (1985) Carbon dioxide in cave atmospheres. New results in Belgium and comparison with some other countries. Earth Surf Process Landf 10:173–187

    Article  Google Scholar 

  • Ek C, Godissart J (2014) Carbon dioxide in cave air and soil air in some karstic areas of Belgium. A prospective view. Geol Belg 17(1):102–106

    Google Scholar 

  • Faimon J, Lang M (2013) Variances in airflows during different ventilation modes in a dynamic U-shaped cave. Int J Speleol 42(2):115–122

    Article  Google Scholar 

  • Faimon J, Ličbinská M (2010) Carbon dioxide in the soils and adjacent caves of the Moravian Karst. Acta Carsol 39(3):463–475

    Article  Google Scholar 

  • Faimon J, Štelcl J, Sas D (2006) Anthropogenic CO2-flux into cave atmosphere and its environmental impact: a case study in the císařská cave (Moravian karst, Czech republic). Sci Total Environ 369:231–245

    Article  Google Scholar 

  • Faimon J, Troppová D, Baldík V, Novotný R (2012a) Air circulation and its impact on microclimatic variables in the Císařká Cave (Moravian Karst, Czech Republic). Int J Climatol 32:599–623

    Article  Google Scholar 

  • Faimon J, Ličbinská M, Zajíček P (2012b) Relationship between carbon dioxide in Balcarka Cave and adjacent soils in the Moravian Karst region of the Czech Republic. Int J Speleol 41(1):17–28

    Article  Google Scholar 

  • Faimon J, Ličbinská M, Zajíček P, Sracek O (2012c) Partial pressures of CO2 in epikarstic zone deduced from hydrogeochemistry of permanent drips, the Moravian Karst, Czech Republic. Acta Carsol 41(1):47–57

    Google Scholar 

  • Ford TD, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley & Sons, Chicester

    Book  Google Scholar 

  • Frisia S, Borsato A, Fairchild IJ, McDermott (2000) Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and southwestern Ireland. J Sediment Res 70(5):1183–1196

    Article  Google Scholar 

  • Frisia S, Fairchild IJ, Fohlmeister J, Miorandi R, Spötl C, Borsato A (2011) Carbon massbalance modeling and carbon isotope exchange processes in dynamic caves. Geochim Cosmochim Acta 75:380–400

    Article  Google Scholar 

  • Garcia-Anton E, Cuezva S, Fernandez-Cortes A, Benavente D, Sanchez-Moral S (2014) Main drivers of diffusive and advective processes of CO2-gas exchange between a shallow vadose zone and the atmosphere. Int J Greenh Gas Control 21:113–129

    Article  Google Scholar 

  • Godissart J, Ek C (2013) Air CO2 in Comblain-au-Pont Cave (Belgium). Relationships with soil CO2 and open air meteorology. In: Filippi M, Bosák P (eds) Proceedings of the 16th international congress of speleology, vol 2. Czech Speleological Society, Praha, pp 400–405

    Google Scholar 

  • Grace J, Lloyd J, McIntyre J, Miranda A, Meir P, Miranda H, Moncrieff J, Massheder J, Wright I, Gash J (1995) Fluxes of carbon dioxide and water vapour over an undisturbed tropical forest in South-West Amazonia. Glob Change Biol 1:1–12

    Article  Google Scholar 

  • Hoyos M, Soler V, Cañaveras JC, Sánchez-Moral S, Sanz-Rubio E (1998) Microclimatic characterization of a karstic cave: human impact on microenvironmental parameters of a prehistoric rock art cave (Candamo Cave, northern Spain). Environ Geol 33(4):231–242

    Article  Google Scholar 

  • Huang YM, Fairchild IJ (2001) Partitioning of Sr2+ and Mg2+ into calcite under karst-analogue experimental conditions. Geochim Cosmochim Acta 65:47–62

    Article  Google Scholar 

  • Jabro JD (2009) Water vapor diffusion through soil as affected by temperature and aggregate size. Transp Porous Med 77:417–428

    Article  Google Scholar 

  • Jabro JD, Sainju UM, Stevens WB, Evans RG (2012) Estimation of CO2 diffusion coefficient at 0–10 cm depth in undisturbed and tilled soils. Arch Agron Soil Sci 58(1):1–9

    Article  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263

    Article  Google Scholar 

  • Kowalczk AJ, Froelich PN (2010) Cave air ventilation and CO2 outgassing by radon-222 modeling: how fast do caves breath? Earth Planet Sci Lett 289:209–219

    Article  Google Scholar 

  • Lang M, Faimon J, Ek C (2015a) The relationship between carbon dioxide concentration and visitor numbers in the homothermic zone of the Balcarka Cave (Moravian Karst) during a period of limited ventilation. Int J Speleol 44(2):167–176

    Article  Google Scholar 

  • Lang M, Faimon J, Ek C (2015b) A case study of anthropogenic impact on the CO2 levels in low-volume profile of the Balcarka Cave (Moravian Karst, Czech Republic). Acta Carsol 44(1):71–80

    Article  Google Scholar 

  • Lasaga AC, Berner RA (1998) Fundamental aspects of quantitative models for geochemical cycles. Chem Geol 145:161–175

    Article  Google Scholar 

  • Luetscher M, Jeannin PY (2004) The role of winter air circulations for the presence of subsurface ice accumulations: an example from Monlési ice cave (Switzerland). Theor Appl Karstology 17:19–25

    Google Scholar 

  • Mattey DP, Fairchild IJ, Atkinson TC, Latin JP, Ainsworth M, Durell R (2010) Seasonal microclimate control of calcite fabrics, stable isotopes and trace elements in modern speleothem from St Michaels Cave, Gibraltar. In: Pedley HM, Rogerson M (eds) Tufas and speleothems: unravelling the microbial and physical controls. Geological Society, Special Publications, London, pp 323–344

    Google Scholar 

  • Mattey DP, Fisher R, Atkinson TC, Latin JP, Durrell R, Ainsworth M, Lowry D, Fairchild IJ (2013) Methane in underground air in Gibraltar karst. Earth Planet Sci Lett 374:71–80

    Article  Google Scholar 

  • Merenne-Schoumaker B (1975) Aspects de l’influence des touristes sur les microclimats de la grotte de Remouchamps. Ann Spéléo 30:273–285

    Google Scholar 

  • Meyer KW, Feng W, Breecker DO, Banner JL, Guilfoyle A (2014) Interpretation of speleothem calcite O13C variations: evidence from monitoring soil CO2, drip water, and modern speleothem calcite in central Texas. Geochim Cosmochim Acta 142:281–298

    Article  Google Scholar 

  • Milanolo S, Gabrovšek F (2009) Analysis of carbon dioxide variations in the atmosphere of srednja bijambarska cave, bosna and Herzegovina. Bound-Layer Meteor 131:479–493

    Article  Google Scholar 

  • Millington RJ, Quirk JP (1960) Transport in porous media. In: Van Baren FA (ed) Transactions of the 7th International Congress of Soil Science, vol 1. Elsevier, Amsterdam, pp 97–106

    Google Scholar 

  • Moldrup P, Kruse CW, Rolston DE, Yamaguchi T (1996) Modeling diffusion and reaction in soils: III. Predicting gas diffusivity from the Campbell soil-water retention model. Soil Sci 161:366–375

    Article  Google Scholar 

  • Musil R et al (1993) Moravský kras – labyrinty poznání (in Czech). GEO program, Adamov

    Google Scholar 

  • Němeček J et al. (1967) Komplexní průzkum zemědělských půd ČSSR (in Czech). VÚMOP Praha, Průvodní zpráva okresu Blansko, Brno

  • Parkhurst D, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2) – a computer program for speciation, batchreaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geol. Surv. Water Resour Inv Rep 99-4259

    Google Scholar 

  • Penman HL (1940) Gas and vapor movement in soil: 1. The diffusion of vapours through porous solids. J Agric Sci 30(3):437–463

    Article  Google Scholar 

  • Peyraube N, Lastennet R, Denis A (2012) Geochemical evolution of groundwater in the unsaturated zone of a karstic massif, using the PCO2–Sic relationship. J Hydrol 430–431:13–24

    Article  Google Scholar 

  • Peyraube N, Lastennet R, Denis A, Malaurent P (2013) Estimation of epikarst air PCO2 using measurements of water δ13CTDIC, cave air PCO2 and δ13CCO2. Geochim Cosmochim Acta 118:1–17

    Article  Google Scholar 

  • Pracný P, Faimon J, Kabelka L, Hebelka J (2015) Variations of carbon dioxide in the air and dripwaters of Punkva Caves (Moravian Karst, Czech Republic). Carbonates Evaporites. doi:10.1007/s13146-015-0259-0

    Google Scholar 

  • Quitt E (1971) Klimatické oblasti Československa (in Czech), Studia geographica 16, GÚ ČSAV. Academia, Brno, pp 1–73

    Google Scholar 

  • Ridgwell AJ, Marshall SJ, Gregson K (1999) Consumption of atmospheric methane by soils: a process-based model. Glob Biogeochem Cycle 13:59–70

    Article  Google Scholar 

  • Riechelmann DFC, Schröder-Ritzrau A, Scholz D, Fohlmeister J, Spötl C, Richter DK, Mangini A (2011) Monitoring bunker cave (NW Germany): a prerequisite to interpret geochemical proxy data of speleothems from this site. J Hydrol 409:682–695

    Article  Google Scholar 

  • Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models, 1st edn. John Wile & Sons, Chicester

    Google Scholar 

  • Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20

    Article  Google Scholar 

  • Spötl C, Fairchild IJ, Tooth AF (2005) Cave air control on dripwater geochemistry, Obir Caves (Austria): implications for speleothem deposition in dynamically ventilated caves. Geochim Cosmochim Acta 69:2451–2468

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley-Interscience, New York

    Google Scholar 

  • Tremaine DM, Froelich PN, Wang Y (2011) Speleothem calcite farmed in situ: modern calibration of δ18O and δ13C paleoclimate proxies in a continously-monitored natural cave system. Geochim Cosmochim Acta 75:4929–4950

    Article  Google Scholar 

  • Troester JW, White WB (1984) Seasonal fluctuations in the carbon dioxide partial pressure in a cave atmosphere. Water Resour Res 20:153–156

    Article  Google Scholar 

  • Wasylenki LE, Dove PM, Wilson DS, De Yoreo JJ (2005) Nanoscale effects of strontium on calcite growth: an in situ AFM study in the absence of vital effects. Geochim Cosmochim Acta 69:3017–3027

    Article  Google Scholar 

  • Welty JR, Wicks CE, Wilson RE, Rorrer GL (2008) Fundamentals of momentum, heat, and mass transfer, 5th edn. Wiley, New York

    Google Scholar 

  • White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, New York

    Google Scholar 

  • WMO (2014) Greenhouse Gas Bulletin, the State of Greenhouse Gases in the Atmosphere Using Global Observations through 2013. World Meteorological Organization, Geneva

    Google Scholar 

  • Wong CI, Banner JL, Musgrove M (2011) Seasonal dripwater Mg/Ca and Sr/Ca variations driven by cave ventilation: implications for and modeling of speleothem paleoclimate records. Geochim Cosmochim Acta 75:3214–3529

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank two anonymous reviewers for valuable comments that helped to improve substantially the manuscript. The research was supported by fundings from Masaryk University (Brno) and Palacký University (Olomouc).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Lang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, M., Faimon, J., Godissart, J. et al. Carbon dioxide seasonality in dynamically ventilated caves: the role of advective fluxes. Theor Appl Climatol 129, 1355–1372 (2017). https://doi.org/10.1007/s00704-016-1858-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1858-y

Keywords

Navigation