Skip to main content
Log in

Performance of eddy-covariance measurements in fetch-limited applications

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

When estimating gas fluxes by means of the eddy covariance (EC) technique, measurement representativeness is ensured by the availability of an adequate fetch. In applications over spatially limited fetches, it is possible to constrain the sensed source area by shortening the measurement height, but this comes at the cost of potentially violating some fundamental assumptions of the method or introducing significant measurement errors. In addition, reliability of footprint models when applied to measurements close to the surface is still debatable. In this manuscript, we investigate whether it is possible to use the EC method for determining the surface-atmosphere exchange over spatially limited ecosystems on horizontal scales of about 100 m. The objectives are (1) to determine the adequate positioning of the instruments in the atmospheric boundary layer, (2) to assess the quality of measurement in search of potential biases, (3) establish whether the source area is sufficiently constrained, (4) and evaluate the performances of some popular footprint models in such conditions. Most notably, we carried out an experiment to assess the footprint of two low EC systems and to evaluate the prediction of the selected footprint models against empirical data.

Our findings show that (1) depending on the properties of the underlying exchange surface, EC measurements as low as 0.8 m above the canopies’ displacement height are still feasible; (2) spectral losses as high as 34 ± 6 % can occur (dominated by instruments displacement), but can still be quantified and largely corrected; and (3) the measurement source area is sufficiently constrained during daytime conditions and two footprint models predict it accurately. We conclude that it is possible to apply EC in fetch-limited applications, at least when surface properties of adjacent land covers do not differ too drastically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aubinet M, Chermanne B, Vandenhaute M (2001) Long term carbon dioxide exchange above a mixed forest in the Belgian ardennes. Agric For Meteorol 108:293–315

    Article  Google Scholar 

  • Bertoldi G, Kustas WP, Albertson JD (2013) Evaluating source area contributions from aircraft flux measurements over heterogeneous land using large-eddy simulation. Boundary-Layer Meteorol 147:261–279. doi:10.1007/s10546-012-9781-y

    Article  Google Scholar 

  • Billesbach DP (2011) Estimating uncertainties in individual eddy covariance flux measurements: a comparison of methods and a proposed new method. Agric For Meteorol 151:394–405. doi:10.1016/j.agrformet.2010.12.001

    Article  Google Scholar 

  • Businger JA (1986) Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques. J Clim Appl Meteorol 25:1100–1124

    Article  Google Scholar 

  • Cai X, Peng G, Guo X, Leclerc MY (2007) Evaluation of backward and forward lagrangian footprint models in the surface layer. Theor Appl Climatol 93:207–223. doi:10.1007/s00704-007-0334-0

    Article  Google Scholar 

  • Dellwik E, Jensen NO (2005) Flux-profile relationships over a fetch limited beech forest. Boundary-Layer Meteorol 115:179–204

    Article  Google Scholar 

  • Finkelstein PL, Sims PF (2001) Sampling error in eddy correlation flux measurements. J Geophys Res 106:3503–3509

    Article  Google Scholar 

  • Finn D, Lamb B, Leclerc M, Horst TW (1996) Experimental evaluation of analytical and lagrangian surface-layer flux footprint models. Boundary-Layer Meteorol 80:283–308

    Google Scholar 

  • Foken T, Aubinet M, Leuning R (2012) The eddy covariance method. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance—a practical guide to measuring data analysis. Springer, Dordrecht, pp. 1–20

    Google Scholar 

  • Foken T, Göckede M, Mauder M, et al. (2004) Post-field data quality control. In: Lee X, Massman WJ, Law BE (eds) Handbook of micrometeorology—a guide for surface flux measurement and analysis. Kluwer Academic Publishers, Dordrecht, pp. 181–208

    Google Scholar 

  • Foken T, Leclerc MY (2004) Methods and limitations in validation of footprint models. Agric For Meteorol 127:223–234. doi:10.1016/j.agrformet.2004.07.015

    Article  Google Scholar 

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105

    Article  Google Scholar 

  • Fratini G, Ibrom A, Arriga N, et al. (2012) Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines. Agric For Meteorol 165:53–63. doi:10.1016/j.agrformet.2012.05.018

    Article  Google Scholar 

  • Fratini G, Mauder M (2014) Towards a consistent eddy-covariance processing: an intercomparison of EddyPro and TK3. Atmos Meas Tech Discuss 7:2107–2126. doi:10.5194/amtd-7-2107-2014

    Article  Google Scholar 

  • Garratt JR (1990) The internal boundary layer—a review. Boundary-Layer Meteorol 50:171–203

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, UK

  • Gash JHC (1986) A note on estimating the effect of a limited fetch on micrometeorological evaporation measurements. Boundary-Layer Meteorol 35:409–413

    Article  Google Scholar 

  • Gioli B, Toscano P, Lugato E, et al. (2012) Methane and carbon dioxide fluxes and source partitioning in urban areas: the case study of Florence, Italy. Environ Pollut 164:125–131. doi:10.1016/j.envpol.2012.01.019

    Article  Google Scholar 

  • Göckede M, Markkanen T, Mauder M, et al. (2005) Validation of footprint models using natural tracer measurements from a field experiment. Agric For Meteorol 135:314–325. doi:10.1016/j.agrformet.2005.12.008

    Article  Google Scholar 

  • Horst TW, Lenschow DH (2009) Attenuation of scalar fluxes measured with spatially-displaced sensors. Boundary-Layer Meteorol 130:275–300. doi:10.1007/s10546-008-9348-0

    Article  Google Scholar 

  • Horst TW, Weil JC (1992) Footprint estimation for scalar flux measurement in the atmospheric surface layer. Boundary-Layer Meteorol 59:279–296

    Article  Google Scholar 

  • Horst TW, Weil JC (1994) How far is enough? The fetch requirements for micrometeorological measurement of surface fluxes. J Atmos Ocean Technol 11:1018–1025

    Article  Google Scholar 

  • Hsieh C, Katul G (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resour 23:765–772

  • Ibrom A, Dellwik E, Flyvbjerg H, et al. (2007) Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agric For Meteorol 147:140–156. doi:10.1016/j.agrformet.2007.07.007

    Article  Google Scholar 

  • Jegede OO, Foken T (1999) A study of the internal boundary layer due to a roughness change in neutral conditions observed during the LINEX field campaigns. Theor Appl Climatol 62:31–41. doi:10.1007/s007040050072

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. New York–Oxford

  • Katul G, Hsieh C, Bowling D, et al. (1999) Spatial variability of turbulent fluxes in the roughness sublayer of an even-aged pine forest. Boundary-Layer Meteorol 93:1–28

    Article  Google Scholar 

  • Kljun N, Kormann R, Rotach MW, Meixner FX (2003) Comparison of lagrangian footprint model LPDM-B with an analytical footprint model. Boundary-Layer Meteorol 106:349–355

    Article  Google Scholar 

  • Knohl A, Schulze E-D, Kolle O, Buchmann N (2003) Large carbon uptake by an unmanaged 250-year-old deciduous forest in central Germany. Agric For Meteorol 118:151–167. doi:10.1016/S0168-1923(03)00115-1

    Article  Google Scholar 

  • Kormann R, Meixner FX (2001) An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorol 99:207–224

  • Leclerc M, Karipot A, Prabha T, et al. (2003a) Impact of non-local advection on flux footprints over a tall forest canopy: a tracer flux experiment. Agric For Meteorol 115:19–30. doi:10.1016/S0168-1923(02)00168-5

    Article  Google Scholar 

  • Leclerc M, Meskhidze N, Finn D (2003b) Comparison between measured tracer fluxes and footprint model predictions over a homogeneous canopy of intermediate roughness. Agric For Meteorol 117:145–158. doi:10.1016/S0168-1923(03)00043-1

    Article  Google Scholar 

  • Leclerc MY, Foken T (2014) Footprints in micrometeorology and ecology, 1st edn. doi: 10.1007/978–3-642-54545-0

  • Leclerc MY, Shen S, Lamb B (1997) Observation and large-eddy simulation modeling of footprints in the lower convective boundary layer. J Geophys Res 102:9323–9334

    Article  Google Scholar 

  • Leclerc MY, Thurtell GW (1990) Footprint prediction of scalar fluxes using a Markovian analysis. Boundary-Layer Meteorol 52:247–258

    Article  Google Scholar 

  • Leclerc MY, Thurtell GW, Kidd GE (1988) Measurements and Langevin simulations of mean tracer concentration fields downwind from a circular line source inside an alfalfa canopy. Boundary-Layer Meteorol 43:287–308

    Article  Google Scholar 

  • Marcolla B, Cescatti A (2005) Experimental analysis of flux footprint for varying stability conditions in an alpine meadow. Agric For Meteorol 135:291–301. doi:10.1016/j.agrformet.2005.12.007

    Article  Google Scholar 

  • Mauder M, Cuntz M, Drüe C, et al. (2013) A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric For Meteorol 169:122–135. doi:10.1016/j.agrformet.2012.09.006

    Article  Google Scholar 

  • Moncrieff JB, Massheder JM, de Bruin H, et al. (1997a) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 188-189:589–611. doi:10.1016/S0022-1694(96)03194-0

    Article  Google Scholar 

  • Moncrieff JB, Valentini R, Greco S, et al. (1997b) Trace gas exchange over terrestrial ecosystems: methods and perspectives in micrometeorology. J Exp Bot 48:1133–1142. doi:10.1093/jxb/48.5.1133

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere 24:163–187

    Google Scholar 

  • Munro DS, Oke TR (1975) Aerodynamic boundary-layer adjustment over a crop in neutral stability. Boundary-Layer Meteorol 9:53–61

    Article  Google Scholar 

  • Neftel A, Spirig C, Ammann C (2008) Application and test of a simple tool for operational footprint evaluations. Environ Pollut 152:644–652. doi:10.1016/j.envpol.2007.06.062

    Article  Google Scholar 

  • Nemitz E, Loubet B, Lehmann BE, et al. (2009) Turbulence characteristics in grassland canopies and implications for tracer transport. Biogeosciences 6:1519–1537

    Article  Google Scholar 

  • Pattey E, Edwards G, Strachan IB, et al. (2006) Towards standards for measuring greenhouse gas fluxes from agricultural fields using instrumented towers. Can J Soil Sci 86:373–400. doi:10.4141/S05-100

    Article  Google Scholar 

  • Prabha TV, Leclerc MY, Baldocchi DD (2008) Comparison of in-canopy flux footprints between large-eddy simulation and the lagrangian simulation. J Appl Meteorol Climatol 47:2115–2128. doi:10.1175/2008JAMC1814.1

    Article  Google Scholar 

  • Rannik Ü, Aubinet M, Kurbanmuradov O, et al. (2000) Footprint analysis for the measurements over a heterogeneous forest. Boundary-Layer Meteorol 97:137–166

    Article  Google Scholar 

  • Rannik Ü, Sogachev A, Foken T, et al. (2012) Footprint analysis. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guideline to measure data analysis. Springer Netherlands, Dordrecht, pp. 211–261

    Chapter  Google Scholar 

  • Raupach MR (1994) Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Boundary-Layer Meteorol 71:211–216

    Article  Google Scholar 

  • Rebmann C, Göckede M, Foken T, et al. (2004) Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling. Theor Appl Climatol 80:121–141. doi:10.1007/s00704-004-0095-y

    Article  Google Scholar 

  • Schmid HP (2002) Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agric For Meteorol 113:159–183. doi:10.1016/S0168-1923(02)00107-7

    Article  Google Scholar 

  • Schmid HP (1994) Source areas for scalars and scalar fluxes. Boundary-Layer Meteorol 67:293–318

    Article  Google Scholar 

  • Schuepp P, Leclerc M, MacPherson J (1990) Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer Meteorol 50:355–373

    Article  Google Scholar 

  • Simpson IJ, Thurtell GW, Neumann HH, et al. (1998) The validity of similarity theory in the roughness sublayer above a forests. Boundary-Layer Meteorol 87:69–99

    Article  Google Scholar 

  • Soegaard H, Jensen NO, Boegh E, et al. (2003) Carbon dioxide exchange over agricultural landscape using eddy correlation and footprint modelling. Agric For Meteorol 114:153–173

    Article  Google Scholar 

  • Van de Boer A, Moene AF, Schüttemeyer D, Graf A (2013) Sensitivity and uncertainty of analytical footprint models according to a combined natural tracer and ensemble approach. Agric For Meteorol 169:1–11. doi:10.1016/j.agrformet.2012.09.016

    Article  Google Scholar 

  • Verma SB, Ullman F, Billesbach DP, et al. (1992) Eddy correlation measurements of methane flux in a northern peatland ecosystem. Boundary-Layer Meteorol 58:289–304

    Article  Google Scholar 

  • Vesala T, Kljun N, Rannik Ü, et al. (2008) Flux and concentration footprint modelling: state of the art. Environ Pollut 152:653–666. doi:10.1016/j.envpol.2007.06.070

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14:512–526

    Article  Google Scholar 

  • Wamser C, Peters G, Lykossov VN (1997) The frequency response of sonic anemometers. Boundary-Layer Meteorol 84:231–246

    Article  Google Scholar 

  • Wyngaard JC (1981) The effect of probe-induced flow distortion on atmospheric turbulence measurements. J Appl Meteorol 20:784–794

    Article  Google Scholar 

  • Wyngaard JC (1988) Flow-distortion effects on scalar flux measurements in the surface layer: implications for sensor design. Boundary-Layer Meteorol 42:19–26

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Federation government grant no. 11.G34.31.0079 “Analysis of GHG fluxes, C and N stocks of anthropogenically affected ecosystems of European Russia.” We thank Turmushbek Murzabekovich Dzhancharov and Vasily Alekseevich Barkov of LAMP Research group for their assistance in the field experiment setup. We also want to thank anonymous reviewers for their useful comments and suggestions that served as input for further analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nicolini.

Electronic supplementary material

ESM 1

(PDF 1688 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolini, G., Fratini, G., Avilov, V. et al. Performance of eddy-covariance measurements in fetch-limited applications. Theor Appl Climatol 127, 829–840 (2017). https://doi.org/10.1007/s00704-015-1673-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1673-x

Keywords

Navigation