Skip to main content
Log in

A comparison of tropopause heights over China between radiosonde and three reanalysis datasets for the period 1979–2012

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

We compared the correspondence of tropopause heights over China calculated from the gridded temperature data provided by the ERA-Interim project, NCEP/NCAR Reanalysis Projects-1 (NCEP-1), and Japanese 25-year Reanalysis (JRA-25) project with the radiosonde observational data for 1979–2012. The results indicate that the annual mean ERA-Interim, NCEP-1, and JRA-25 tropopause heights are higher than observations by 203, 228, and 293 gpm, respectively. Large positive differences for the majority of subtropical China primarily contribute to this high bias. An error analysis indicates that the internal coherence of the ERA-Interim data is better than that of NCEP-1 or JRA-25. Although JRA-25 was a second-generation reanalysis, the biases of the JRA-25 and NCEP-1 data relative to the observations remain substantially larger than those of the ERA-Interim. Furthermore, a spatial and temporal comparison of trends also indicates that the ERA-Interim tropopause height changes correspond most closely to the observed trends in China. Overall, our comprehensive analysis of the three reanalysis products indicates that on both seasonal and annual bases, the ERA-Interim tropopause heights are closer to the observations than those of the NCEP-1 or JRA-25 reanalyses. Furthermore, the biases are mainly a result of the algorithm that determines the tropopause height, which is limited by the coarse vertical resolution of the input data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anel JA, Gimeno L, de la Torre L, Nieto R (2006) Changes in tropopause height for the Eurasian region determined from CARDS radiosonde data. Naturwissenschaften 93(12):603–609. doi:10.1007/s00114-006-0147-5

    Article  Google Scholar 

  • Bonavita M (2014) On some aspects of the impact of GPSRO observations in global numerical weather prediction. Q J R Meteorol Soc 140(685):2546–2562. doi:10.1002/qj.2320

    Article  Google Scholar 

  • Cucurull L, Derber JC, Treadon R, Purser RJ (2007) Assimilation of global positioning system radio occultation observations into NCEP's global data assimilation system. Mon Weather Rev 135(9):3174–3193. doi:10.1175/mwr3461.1

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Healy SB, Thepaut JN (2006) Assimilation experiments with CHAMP GPS radio occultation measurements. Q J R Meteorol Soc 132(615):605–623. doi:10.1256/qj.04.182

    Article  Google Scholar 

  • Highwood EJ, Hoskins BJ (1998) The tropical tropopause. Q J R Meteorol Soc 124(549):1579–1604. doi:10.1256/smsqj.54910

    Article  Google Scholar 

  • Hoinka KP (1998) Statistics of the global tropopause pressure. Mon Weather Rev 126(12):3303–3325. doi:10.1175/1520-0493(1998)126<3303:sotgtp>2.0.co;2

    Article  Google Scholar 

  • Holton JR, Haynes PH, McIntyre ME, Douglass AR, Rood RB, Pfister L (1995) Stratosphere-troposphere exchange. Rev Geophys 33(4):403–440

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471. doi:10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2

    Article  Google Scholar 

  • Ma LJ, Zhang TJ, Li QX, Frauenfeld OW, Qin D (2008) Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis air temperatures with ground-based measurements in China. J Geophys Res-Atmos 113 (D15). doi:10.1029/2007jd009549

  • Nagurny AP (1998) Climatic characteristics of the tropopause over the Arctic Basin. Ann Geophysicae Atmos Hydrospheres Space Sci 16(1):110–115. doi:10.1007/s00585-997-0110-6

    Google Scholar 

  • Onogi K, Tslttsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kaalhori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85(3):369–432. doi:10.2151/jmsj.85.369

    Article  Google Scholar 

  • Poli P, Healy SB, Dee DP (2010) Assimilation of global positioning system radio occultation data in the ECMWF ERA-Interim reanalysis. Q J R Meteorol Soc 136(653):1972–1990. doi:10.1002/qj.722

    Article  Google Scholar 

  • Reichler T, Dameris M, Sausen R (2003) Determining the tropopause height from gridded data. Geophys Res Lett 30 (20). doi:10.1029/2003gl018240

  • Reid GC, Gage KS (1985) Interannual variations in the height of the tropical tropopause. J Geophys Res-Atmos 90(ND3):5629–5635. doi:10.1029/JD090iD03p05629

    Article  Google Scholar 

  • Reid GC, Gage KS (1996) The tropical tropopause over the western Pacific: wave driving, convection, and the annual cycle. J Geophys Res-Atmos 101(D16):21233–21241. doi:10.1029/96jd01622

    Article  Google Scholar 

  • Santer BD, Sausen R, Wigley TML, Boyle JS, AchutaRao K, Doutriaux C, Hansen JE, Meehl GA, Roeckner E, Ruedy R, Schmidt G, Taylor KE (2003a) Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: Decadal changes. J Geophys Res-Atmos 108 (D1). doi:10.1029/2002jd002258

  • Santer BD, Wehner MF, Wigley TML, Sausen R, Meehl GA, Taylor KE, Ammann C, Arblaster J, Washington WM, Boyle JS, Bruggemann W (2003b) Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301(5632):479–483. doi:10.1126/science.1084123

    Article  Google Scholar 

  • Sheng PX, Mao JT, Li JG, Zhang AC, Sang JG, Pan NX (2003) Atmospheric physics (in Chinese). Peking University Press, Beijing

    Google Scholar 

  • Wallace JM, Hobbs PV (2006) Atmospheric science: an introductory survey, vol 92, secondth edn. Academic, Canada

    Google Scholar 

  • WMO (1957) Meteorology a three-dimensional science: second session of the commission for aerology. WMO Bull 6(4):134–138

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 41275011 and 41375001). We are very grateful to the Editor and anonymous reviewers for their careful reviews and valuable comments, which led to substantial improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, Z., Wei, H. et al. A comparison of tropopause heights over China between radiosonde and three reanalysis datasets for the period 1979–2012. Theor Appl Climatol 125, 271–279 (2016). https://doi.org/10.1007/s00704-015-1513-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1513-z

Keywords

Navigation