Skip to main content
Log in

Applications of threshold models and the weighted bootstrap for Hungarian precipitation data

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This paper presents applications of the peaks-over-threshold methodology for both the univariate and the recently introduced bivariate case, combined with a novel bootstrap approach. We compare the proposed bootstrap methods to the more traditional profile likelihood. We have investigated 63 years of the European Climate Assessment daily precipitation data for five Hungarian grid points, first separately for the summer and winter months, then aiming at the detection of possible changes by investigating 20 years moving windows. We show that significant changes can be observed both in the univariate and the bivariate cases, the most recent period being the most dangerous in several cases, as some return values have increased substantially. We illustrate these effects by bivariate coverage regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The (old) parameter σ in terms of ξ and H −1(q): \(\sigma = \sigma (\xi ,H^{-1}(q)) =\frac {\xi H^{-1}(q)}{(1-q)^{-1}-1}.\)

  2. This means in average \(\frac {n}{l}\) observations in a single year.

  3. Special case of Theorem 2.6 in Coles (2001).

References

  • Balkema AA, De Haan L (1974) Residual life time at great age. Ann Probab:792–804

  • Bartholy J, Pongrácz R (2007) Regional analysis of extreme temperature and precipitation indices for the Carpathian Basin from 1946 to 2001. Glob Planet Chang 57:83–95

    Article  Google Scholar 

  • Bartholy J, Pongrácz R (2010) Analysis of precipitation conditions for the Carpathian Basin based on extreme indices in the 20th century and climate simulations for the 21st century. Phys Chem Earth 35:43–51

    Article  Google Scholar 

  • Bartholy J, Pongrácz R, Gelybó G (2007) Regional climate change expected in Hungary for 2071–2100. Appl Ecol Environ Res 5(1):1–17

    Article  Google Scholar 

  • Beguería S, Vicente-Serrano SM (2006) Mapping the hazard of extreme rainfall by peaks over threshold extreme value analysis and spatial regression techniques. J Appl Meteorol Climatol 45(1):108–124

    Article  Google Scholar 

  • Beran R (1988) Prepivoting test statistics: a bootstrap view of asymptotic refinements. J Am Stat Assoc 83 (403):687–697

    Article  Google Scholar 

  • Bhattacharya A, Bose A (2012) Resampling in time series models. arXiv:1201.1166

  • Bücher Axel, Dette Holger (2010) A note on bootstrap approximations for the empirical copula process. Statistics & Probability Letters 80(23):1925–1932

    Article  Google Scholar 

  • Chernick MR (2011) Bootstrap methods: a guide for practitioners and researchers, vol 619. Wiley-Interscience

  • Chou C, Chiang JCH, Lan C-W, Chung C-H, Liao Y-C , Lee C-J (2013) Increase in the range between wet and dry season precipitation. Nat Geosci 6(4):263–267

    Article  Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer

  • Dan’azumi S, Shamsudin S, Aris A (2010) Modeling the distribution of rainfall intensity using hourly data. Am J Environ Sci 6(3):238

    Article  Google Scholar 

  • Davidson R, Flachaire E (2008) The wild bootstrap, tamed at last. J Econ 146(1):162–169

    Article  Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their application, vol 1. Cambridge University Press

  • Domonkos P (2003) Recent precipitation trends in Hungary in the context of larger scale climatic changes. Nat Hazards 29(2):255–271

    Article  Google Scholar 

  • Dunn PK (2004) Occurrence and quantity of precipitation can be modelled simultaneously. Int J Climatol 24(10):1231–1239

    Article  Google Scholar 

  • Feng X, He X, Hu J (2011) Wild bootstrap for quantile regression. Biometrika 98(4):995–999

    Article  Google Scholar 

  • Flachaire E (2005) Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap. Comput Stat Data Anal 49(2):361–376

    Article  Google Scholar 

  • Haylock M, Hofstra N, Tank AMGK, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res Atmos 113(D20):1984–2012

    Article  Google Scholar 

  • Hofstra N, Haylock M, New M, Jones PD (2009) Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J Geophys Res Atmos 114(D21):1984–2012

    Article  Google Scholar 

  • Hundecha Y, Bárdossy A (2005) Trends in daily precipitation and temperature extremes across western Germany in the second half of the 20th century. Int J Climatol 25(9):1189–1202

    Article  Google Scholar 

  • Kyselỳ J (2008) A cautionary note on the use of nonparametric bootstrap for estimating uncertainties in extreme-value models. J Appl Meteorol Climatol 47(12):3236– 3251

    Article  Google Scholar 

  • Kyselỳ J, Gaál L, Picek J (2011) Comparison of regional and at-site approaches to modelling probabilities of heavy precipitation. Int J Climatol 31(10):1457–1472

    Article  Google Scholar 

  • Pickands J (1981) Multivariate extreme value distributions. In: Proceedings 43rd session international statistical institute, vol 2, pp 859–878

  • Pickands J III (1975) Statistical inference using extreme order statistics. Ann Stat:119–131

  • Rakonczai P (2012) mgpd: Functions for multivariate generalized Pareto distribution (MGPD of type II), http://CRAN.R-project.org/package=mgpd. R package version 1.99

  • Rakonczai P, Tajvidi N (2012) On prediction of bivariate extremes. Int J Intell Technol Appl Stat 3(2):115–139

    Google Scholar 

  • Rakonczai P, Zempléni A (2012) Bivariate generalized Pareto distribution in practice: models and estimation. Environmetrics 23(3):219–227

    Article  Google Scholar 

  • Rana S, Midi H, Rahmatullah Imon AHM (2012) Robust wild bootstrap for stabilizing the variance of parameter estimates in heteroscedastic regression models in the presence of outliers. Math Probl Eng

  • Rootzén H, Tajvidi N (2006) Multivariate generalized Pareto distributions. Bernoulli 12(5):917–930

    Article  Google Scholar 

  • Tank AMGK, Können GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Clim 16:3665–3680

    Article  Google Scholar 

  • Uboldi F, Sulis AN, Lussana C, Cislaghi M, Russo M (2013) A spatial bootstrap technique for parameter estimation of rainfall annual maxima distribution. Hydrol Earth Syst Sci 10:11755–11794

    Article  Google Scholar 

  • Varga L, Zempléni A (2012) Weighted bootstrap in GARCH models. arXiv:1209.1302

  • Wang SX (2001) Maximum weighted likelihood estimation. PhD thesis, University of British Columbia

Download references

Acknowledgments

P. Rakonczai’s research was supported by an whitei OTKA mobility grant (OTKA registration number: MB08A 84576, PKR registration number: HUMAN-MB08-1-2011-0007). The work of L. Varga was supported by the European Union Social Fund (Grant Agreement No. TÁMOP 4.2.1/B-09/1/KMR-2010-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Varga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varga, L., Rakonczai, P. & Zempléni, A. Applications of threshold models and the weighted bootstrap for Hungarian precipitation data. Theor Appl Climatol 124, 641–652 (2016). https://doi.org/10.1007/s00704-015-1438-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1438-6

Keywords

Navigation