Skip to main content

Advertisement

Log in

Evaluation of cloud properties in the NCEP CFSv2 model and its linkage with Indian summer monsoon

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Cloud fraction, which varies greatly among general circulation models, plays a crucial role in simulation of Indian summer monsoon rainfall (ISMR). The NCEP Climate Forecast System version 2 (CFSv2) model is evaluated in terms of its simulation of cloud fraction, cloud condensate, outgoing longwave radiation (OLR), and tropospheric temperature (TT). Biases in these simulated quantities are computed using observations from CALIPSO and reanalysis data from MERRA. It is shown that CFSv2 underestimates (overestimates) high- (mid-) level clouds. The cloud condensate is also examined to see its impact on different types of clouds. The upper-level cloud condensate is underestimated, particularly during the summer monsoon period, which leads to a cold TT and a dry precipitation bias. The unrealistically weak TT gradient between ocean and land is responsible for the underestimation of ISMR. The model-simulated OLR is overestimated which depicts the weaker convective activity. A large underestimate of precipitable water is also seen along the cross-equatorial flow and particularly over the Indian land region collocated with a dry precipitation bias. The linkages among cloud microphysical, thermodynamical, and dynamical processes are identified here. Thus, this study highlights the importance of cloud properties, a major cause of uncertainty in CFSv2, and also proposes a pathway for improvements in its simulation of the Indian summer monsoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abhilash S, Sahai AK, Pattnaik S, Goswami BN, Kumar A (2014) Extended range prediction of active-break spells of Indian summer monsoon rainfall using an ensemble prediction system in NCEP Climate Forecast System. Int J Clim 34:98–113. doi:10.1002/joc.3668

    Article  Google Scholar 

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydro Meteorol 4:1147–1167

    Google Scholar 

  • Arakawa A (1975) Modelling clouds and cloud processes for use in climate model. The Physical Basis of Climate and Climate Modelling, GARP Publication Series, No. 16, WMO, 183–197

  • Arakawa A, Schubert WH (1974) Interaction of a cumulus ensemble with the large-scale environment, Part 1. J Atmos Sci 31:674–701

    Article  Google Scholar 

  • Baker MB (1997) Cloud microphysics and climate. Science 276:1072–1078

    Article  Google Scholar 

  • Chattopadhyay R, Goswami BN, Sahai AK, Fraedrich K (2009) Role of stratiform rainfall in modifying the northward propagation of monsoon intraseasonal oscillation. J Geophys Res 114:D19114, doi:10.1029/2009JD011869

  • Chaudhari HS, Shinde MA, Oh JH (2010) Understanding of anomalous Indian Summer Monsoon rainfall of 2002 and 1994. Quat Int 213:20–32

    Article  Google Scholar 

  • Chaudhari HS, Pokhrel S, Mohanty S, Saha SK (2013) Seasonal prediction of Indian summer monsoon in NCEP coupled and uncoupled model. Theor Appl Clim :1–19. doi:10.1007/s00704-013-0854-8

  • Chaudhari HS, Pokhrel S, Saha SK, Dhakate A, Hazra A (2014) Improved depiction of Indian Summer Monsoon in latest high resolution NCEP Climate Forecast System Reanalysis. Int J Climatol (in press)

  • Choudhury AD, Krishnan R (2011) Dynamical response of the south Asian monsoon trough to latent heating from stratiform and convective precipitation. J Atmos Sci 68:1347–1363

    Article  Google Scholar 

  • Clough SA, Shephard MW, Mlawer EJ, Delamere JS, Iacono MJ, Cady-Pereira K, Boukabara S, Brown PD (2005) Atmospheric radiative transfer modeling: a summary of the AER codes. J Quant Spec Radiat Trans 91:233–244

    Article  Google Scholar 

  • Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 1089(D22):8851. doi:10.1029/2002JD003296

    Article  Google Scholar 

  • Goswami BN, Xavier PK (2005) Dynamics of internal interannual variability of the Indian summer monsoon in a GCM. J Geophys Res 110:D24104. doi:10.1029/2005JD006042

  • Griffies SM, Harrison MJ, Pacanowski RC, Rosati A (2004) A technical guide to MOM4. GFDL Ocean Group Tech Rep 5:337

    Google Scholar 

  • Han J, Pan H-L (2011) Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Weath Forecast 26:520–533. doi:10.1175/WAF-D-10-05038.1

    Article  Google Scholar 

  • Hazra A, Goswami BN, Chen J-P (2013a) Role of interactions between aerosol radiative effect, dynamics and cloud microphysics on transitions of monsoon intraseasonal oscillations. J Atmos Sci 70:2073–2087. doi:10.1175/JAS-D-12-0179.1

    Article  Google Scholar 

  • Hazra A, Taraphdar S, Halder M, Pokhrel S, Chaudhari HS, Salunke K, Mukhopadhyay P, Rao SA (2013b) Indian summer monsoon drought 2009: role of aerosol and cloud microphysics. Atmos Sci Lett 14:181–186. doi:10.1002/asl.437

    Article  Google Scholar 

  • Hazra A, Chaudhari HS, Pokhrel S (2014) Improvement in convective and stratiform rain fractions over the Indian region with introduction of new ice nucleation parameterization in ECHAM5. Theor Appl Clim. doi:10.1007/s00704-014-1163-6

    Google Scholar 

  • Hu Z-Z, Huang B, Pegion K (2008) Low cloud errors over the southeastern Atlantic in the NCEP CFS and their association with lower-tropospheric stability and air-sea interaction. J Geophys Res 113:D12114. doi:10.1029/2007JD009514

  • Hu et al (2009) CALIPSO/CALIOP cloud phase discrimination algorithms. J Atmos Oceanic Technol 26(11):2293–2309, doi:10.1175/2009JTECHA1281.1

  • Kanamitsu M, Ebisuzaki W, Woolen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kang I-S, Yang YM, Tao W-K (2014) GCMs with implicit and explicit representation of cloud microphysics for simulation of extreme precipitation frequency. Clim Dyn. doi:10.1007/s00382-014-2376-1

    Google Scholar 

  • Kim YJ, Arakawa A (1995) Improvement of orographic gravity wave parameterization using a meso-scale gravity wave model. J Atmos Sci 52:1875–1902

    Article  Google Scholar 

  • Kim D, Kang I-S (2012) A bulk mass flux convection scheme for climate model: description and moisture sensitivity. Clim Dyn 38:411–429

    Article  Google Scholar 

  • Krishnamurti TN, Bedi HS, Subramaniam M (1989) The summer monsoon of 1987. J Climate 2:321–340

    Article  Google Scholar 

  • Kumar S, Hazra A, Goswami BN (2014) Role of interaction between dynamics, thermodynamics and cloud microphysics on summer monsoon precipitating clouds over the Myanmar coast and the western ghats. Clim Dyn. doi:10.1007/s00382-013-909-3

    Google Scholar 

  • Lin B, Minnis P, Fan T-F, Hu Y, Sun W (2010) Radiation characteristics of low and high clouds in different oceanic regions observed by CERES and MODIS. Int J Remote Sens 31:6473–6492. doi:10.1080/01431160903548005

    Article  Google Scholar 

  • Lott F, Miller MJ (1997) A new subgrid-scale orographic drag parametrization: its formulation and testing. Q J Roy Meteorol Soc 123:101–127

    Article  Google Scholar 

  • Mahakur M, Prabhu A, Sharma AK, Rao VR, Senroy S, Singh R, Goswami BN (2013) High-resolution outgoing longwave radiation dataset from Kalpana-1 satellite during 2004–2012. Curr Sci 105:1124–1133

    Google Scholar 

  • Moorthi S, Pan HL, Caplan P (2001) NCEP operational MRF/AVN global analysis/forecast system. NWS Tech Proc Bull 484:14. Available at http://www.nws.noaa.gov/om/tpb/484.htm

  • Moorthi S, Sun R, Xia H, Mechoso CR (2010) Low-cloud simulation in the Southeast Pacific in the NCEP GFS: role of vertical mixing and shallow convection. NCEP Office Note 463, pp 28. Available online at http://www.emc.ncep.noaa.gov/officenotes/FullTOC.html#2000

  • Mukhopadhyay P, Taraphdar S, Goswami BN (2011) Influence of moist processes on track and intensity forecast of cyclones over the north Indian Ocean. J Geophys Res 116:D05116. 1–21

  • Pokhrel S, Rahaman H, Parekh A, Saha SK, Dhakate A, Chaudhari HS, Gairola RM (2012) Evaporation-precipitation variability over Indian Ocean and its assessment in NCEP Climate Forecast System (CFSv2). Clim Dyn 39:2585–2608

    Article  Google Scholar 

  • Rajeevan M, Rohini P, Niranjan Kumar K, Srinivasan J, Unnikrishnan CK (2013) A study of vertical cloud structure of the Indian summer monsoon using CloudSat data. Clim Dyn 40:637–650

    Article  Google Scholar 

  • Ramanathan V (1987) The role of earth radiation budget studies in climate and general circulation research. J Geophys Res 92(D4):4075–4095. doi:10.1029/JD092iD04p04075

    Article  Google Scholar 

  • Randall DA, Coakley JA, Fairall CW, Kropfli RA, Lenschow DH (1984) Outlook for research on subtropical marine stratiform clouds. Bull Am Meteorol Soc 65:1290–1301

    Article  Google Scholar 

  • Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1

  • Saha S, Moorthi S, Pan H-L et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057

    Article  Google Scholar 

  • Saha SK, Pokhrel S, Chaudhari HS (2013) Influence of Eurasian snow on Indian summer monsoon in NCEP CFSv2 freerun. Clim Dyn 41:1801–1815

    Article  Google Scholar 

  • Saha SK, Pokhrel S, Chaudhari HS, Dhakate A, Shewale S, Sabeerali CT, Salunke K, Hazra A, Mahapatra S, Rao SA (2014a) Improved simulation of Indian summer monsoon in latest NCEP climate forecast system free run. Int J Clim 34:1628–1641

    Article  Google Scholar 

  • Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y-T, Chuang H-Y, Iredell M, Ek M, Meng J, Yang R, Mendez MP, van den Dool H, Zhang Q, Wang W, Chen M, Becker E (2014b) The NCEP climate forecast system version 2. J Climate 27:2185–2208

    Article  Google Scholar 

  • Sikka D, Gadgil S (1980) On the maximum cloud zone and the ITCZ over Indian, longitudes during the southwest monsoon. Mon Weather Rev 108:1840–1853

    Article  Google Scholar 

  • Sperber KR, Brankovic C, Deque M, Frederiksen CS, Graham R, Kitoh A, Kobayashi C, Palmer T, Puri K, Tennant W, Volodin E (2001) Dynamical seasonal predictability of the Asian summer monsoon. Mon Weather Rev 129:2226–2248

    Article  Google Scholar 

  • Stephens GL, Vane DG, Boain RJ, Mace GG, Sassen K, Wang Z, Illingworth AJ, O'Connor EJ, Rossow WB, Durden SL, Miller SD, Austin RT, Benedetti A, Mitrescu C (2002) The Cloudsat mission and A-train: a new dimension of space based observations of clouds and precipitation. Bull Am Meteorol Soc 83:1771–1790

    Article  Google Scholar 

  • Stubenrauch C, Duvel J-P, Kandel RS (1993) Determination of longwave anisotropic emission factors from combined broad- and narrowband radiance measurements. J Appl Meteorol 32:848–856

    Article  Google Scholar 

  • Sun R, Moorthi S, Mechoso CR (2010) Simulation of low clouds in the Southeast Pacific by the NCEP GFS: sensitivity to vertical mixing. Atmos Chem Phys 10:12261–12272

    Article  Google Scholar 

  • Sundqvist H, Berge E, Kristjansson JE (1989) Condensation and cloud studies with mesoscale numerical weather prediction model. Mon Weather Rev 117:1641–1757

    Article  Google Scholar 

  • Tao W-K, Simpson J, Lang S, McCumber M, Adler R, Penc R (1990) An algorithm to estimate the heat budget from vertical hydrometeor profile. J Appl Meteorol 29:1232–1244

    Article  Google Scholar 

  • Thorsen TJ, Fu Q, Comstock J (2011) Comparison of the CALIPSO satellite and ground‐based observations of cirrus clouds at the ARM TWP sites. J Geophys Res 116:D21203. doi:10.1029/2011JD015970

  • Waliser DE, Li J-LF, Woods CP, Austin RT, Bacmeister J, Chern J, Del Genio A, Jiang JH, Kuang Z, Meng H, Minnis P, Platnick S, Rossow WB, Stephens GL, Sun-Mack S, Tao W-K, Tompkins AM, Vane DG, Walker C, Wu D (2009) Cloud ice: a climate model challenge with signs and expectations of progress. J Geophys Res 114(10):

  • Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability and the prospectus for prediction. J Geophys Res 103:14451–14510

    Article  Google Scholar 

  • Winker DM, Vaughan MA, Omar A, Hu Y, Powell KA, Liu Z, Hunt WH, Young SH (2009) Overview of the CALIPSO mission and CALIOP data processing algorithms. J Atmos Oceanic Tech 26:2310–2323. doi:10.1175/2009JTECHA1281.1

    Article  Google Scholar 

  • Wu X, Moorthi S, Okomoto K, Pan HL (2005) Sea ice impacts on GFS forecasts at high latitudes. In: Eighth conference on polar meteorology and oceanography. American Meteorological Society, San Diego, CA, 7.4

  • Xavier PK, Marzin C, Goswami BN (2007) An objective definition of the Indian summer monsoon season and a new perspective on the ENSO–monsoon relationship. Q J Roy Meteorol Soc 133:749–764

    Article  Google Scholar 

  • Xu KM, Randall DA (1996) A semiempirical cloudiness parameterization for use in climate models. J Atmos Sci 53:3084–3102

    Article  Google Scholar 

  • Yoo H, Li Z (2012) Evaluation of cloud properties in the NOAA/NCEP global forecast system using multiple satellite products. Clim Dyn. doi:10.1007/s00382-012-1430-0

    Google Scholar 

  • Zhang MH, Lin WY, Klein SA et al (2005) Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J Geophys Res 110:D15S02. doi:10.1029/2004JD005021

  • Zhao QY, Carr FH (1997) A prognostic cloud scheme for operational NWP models. Mon Weather Rev 125:1931–1953

    Article  Google Scholar 

  • Zhou Y-P, Tao W-K, Hou A-Y, Olson WS, Shie C-L, Lau KM, Chou MD, Lin X, Grecu M (2007) Use of high-resolution satellite observations to evaluate cloud and precipitation statistics from cloud-resolving model simulations. Part I: South China Sea monsoon experiment. J Atmos Sci 64:4309–4329

    Article  Google Scholar 

Download references

Acknowledgments

Indian Institute of Tropical Meteorology (IITM), Pune, which is fully funded by the Ministry of Earth Sciences, Government of India, New Delhi is acknowledged. Authors are thankful to Director (IITM), Dr. SuryaChandra Rao and Prof. B. N. Goswami for the constant encouragement and support. Authors are grateful to Dr. Yu-Tai Hou and Dr. S. Moorthi for the valuable discussions and inputs regarding the diagnoses of cloud fractions in CFSv2. Authors are very much thankful to Mr. M. Mahakur (IITM) for the availability of OLR data from Kalpana INSAT satellite and duly acknowledge Dr. X. Jiang of JPL, NASA for providing CloudSat data. Authors duly acknowledge NASA for the MERRA data set, and CALIPSO, NCEP, and ISCCP for the production of the data used in this research effort. Last, but not the least, thanks are due to the anonymous referees and editor for the fruitful and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Hazra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazra, A., Chaudhari, H.S. & Dhakate, A. Evaluation of cloud properties in the NCEP CFSv2 model and its linkage with Indian summer monsoon. Theor Appl Climatol 124, 31–41 (2016). https://doi.org/10.1007/s00704-015-1404-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1404-3

Keywords

Navigation