Skip to main content

Advertisement

Log in

Fractal structure and predictive strategy of the daily extreme temperature residuals at Fabra Observatory (NE Spain, years 1917–2005)

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

A compilation of daily extreme temperatures recorded at the Fabra Observatory (Catalonia, NE Spain) since 1917 up to 2005 has permitted an exhaustive analysis of the fractal behaviour of the daily extreme temperature residuals, DTR, defined as the difference between the observed daily extreme temperature and the daily average value. The lacunarity characterises the lag distribution on the residual series for several thresholds. Hurst, H, and Hausdorff, Ha, exponents, together with the exponent β of the decaying power law, describing the evolution of power spectral density with frequency, permit to characterise the persistence, antipersistence or randomness of the residual series. The self-affine character of DTR series is verified, and additionally, they are simulated by means of fractional Gaussian noise, fGn. The reconstruction theorem leads to the quantification of the complexity (correlation dimension, μ*, and Kolmogorov entropy, κ) and predictive instability (Lyapunov exponents, λ, and Kaplan-Yorke dimension, D KY) of the residual series. All fractal parameters are computed for consecutive and independent segments of 5-year lengths. This strategy permits to obtain a high enough number of fractal parameter samples to estimate time trends, including their statistical significance. Comparisons are made between results of predictive algorithms based on fGn models and an autoregressive autoregressive integrated moving average (ARIMA) process, with the latter leading to slightly better results than the former. Several dynamic atmospheric mechanisms and local effects, such as local topography and vicinity to the Mediterranean coast, are proposed to explain the complex and instable predictability of DTR series. The memory of the physical system (Kolmogorov entropy) would be attributed to the interaction with the Mediterranean Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alexandersson H, Moberg A (1997) Homogenisation of Swedish temperature data. Part I: homogeneity tests for linear trends. Int J Climatol 17:25–34

    Article  Google Scholar 

  • Allain C, Cloitre M (1991) Scale rules in rock fracture and possible implications for earthquake prediction. Nature 297:47–49

    Google Scholar 

  • Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of 1/ƒ noise. Phys Rev Lett 59(4):381–384

    Article  Google Scholar 

  • Barry RG, Chorley RJ (1995) Atmosphere, weather and climate, 6th edn. Routledge, London, 392pp

    Google Scholar 

  • Betts AK, Ball JH, Beljaars AC, Miller MJ, Viterbo PA (1996) The land surface-atmosphere interaction. A review based on observational and global modeling perspectives. J Geophys Res 101(D3):7209–7225

    Article  Google Scholar 

  • Box GEP, Jenkins GM (1976) Time series analysis. Forecasting and control. Holden-Day, California, 575pp

    Google Scholar 

  • Buishand TA (1982) Some methods for testing the homogeneity of rainfall records. J Hydrol 58:11–27

    Article  Google Scholar 

  • Burgueño A, Lana X, Serra C (2002) Significant hot and cold events at Fabra Observatory, Barcelona (NE Spain). Theor Appl Climatol 71(3–4):141–156

    Google Scholar 

  • Burgueño A, Lana X, Serra C, Martínez MD (2014) Daily extreme temperature multifractals in Catalonia (NE Spain). Phys Lett A 378:874–885

    Article  Google Scholar 

  • Diks C (1999) Nonlinear time series analysis. Methods and applications. In: Nonlinear time series and chaos, 4. World Scientific, London, 209pp

  • Dimri VP (2005) Fractal behavior of the Earth system. Springer, 208pp

  • Eckmann JP, Oliffson S, Ruelle D, Ciliberto S (1986) Lyapunov exponents for time series. Phys Rev A 34(6):4971–4979

    Article  Google Scholar 

  • Hurst HE, Black RP, Simaika YM (1965) Long-term storage. Constable, London, 145pp

    Google Scholar 

  • Jansà A, Genoves A, García-Moya JA (2000) Western Mediterranean cyclones and heavy rain. Part I: numerical experiment concerning the Piedmont flood case. Meteorol Appl 7:323–333

    Article  Google Scholar 

  • Jansà A, Genoves A, Picornell MA, Campins J, Riosalido R, Carretero O (2001) Western Mediterranean cyclones and heavy rain. Part 2: statistical approach. Meteorol Appl 8:43–56

    Article  Google Scholar 

  • Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316:87–114

    Article  Google Scholar 

  • Kärner O (2009) ARIMA representation for daily solar irradiance and surface air temperature time series. J Atmos Solar Terrestrial Phys 71:841–847

    Article  Google Scholar 

  • Korvin G (1992) Fractal models in the Earth sciences. Elsevier, Amsterdam, 396pp

    Google Scholar 

  • Lana X, Burgueño A (1996) Extreme winter minimum temperatures in Catalonia (North-East Spain). Expected values and their spatial distribution. Inter J Climatol 16:1365–1378

    Article  Google Scholar 

  • Lana X, Martínez MD, Burgueño A, Serra C (2009) Statistics of hot and cold events in Catalonia (NE Spain) for the recording period 1950–2004. Theor Appl Climatol 97:135–150

    Article  Google Scholar 

  • Lana X, Martínez MD, Serra C, Burgueño A (2010) Complex behaviour and predictability of the European dry spell regimes. Nonlinear Proc Geophys 17:449–512

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flows. J Atmos Sci 20:130–141

    Article  Google Scholar 

  • Lyapunov AM (1947) Problème général de la stabilité du mouvement. Princeton University Press, Princeton

    Google Scholar 

  • Lyapunov AM (1966) Stability of motion. Academic, New York

    Google Scholar 

  • Macchiato M, Serio C, Lapenna V, La Rotonda L (1993) A parametric time series analysis of hot and cold events in daily temperatures: an application in Southern Italy. J Appl Meteorol 32:1270–1281

    Article  Google Scholar 

  • Malamud BD, Turcotte DL (1997) Self-affine time series: generation and analysis. Adv Geophys 40:1–90

    Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. Freeman, San Francisco

    Google Scholar 

  • Mandelbrot BB, Wallis JR (1969) Computer experiments with fractional Gaussian noises, parts I, II, III. Water Resour Res 5:228–267

    Article  Google Scholar 

  • Martínez MD, Lana X, Burgueño A, Serra C (2007) Lacunarity, predictability and predictive instability of the daily precipitation regime in the Iberian Peninsula. Nonlinear Proc Geophys 14:109–121

    Article  Google Scholar 

  • Martínez MD, Serra C, Burgueño A, Lana X (2010a) Time trends of daily maximum and minimum temperatures in Catalonia (NE Spain) for the period 1975–2004. Int J Climatol 30:267–290

    Article  Google Scholar 

  • Martínez MD, Lana X, Burgueño A, Serra C (2010b) Predictability of the monthly North Atlantic oscillation index based on dynamic systems theory. Nonlinear Proc Geophys 17:93–101

    Article  Google Scholar 

  • Pelletier JD, Turcotte DL (1997) Self-affine time series: applications and models. Adv Geophys 40:1–64

    Google Scholar 

  • Pettitt AN (1979) A non-parametric approach to the change point problem. J Appl Stat 28(2):126–135

    Article  Google Scholar 

  • Raso JM (2001) Calor y mortalidad cardiovascular en Barcelona. Pub Asoc Esp Climatol Ser A 2:541–550

    Google Scholar 

  • Raso JM (2002) Relación entre las temperaturas diarias y la mortalidad en Barcelona, y su ajuste mediante funciones polinómicas. Pub Asoc Esp Climatol Ser A 3:521–532

    Google Scholar 

  • Redaño A, Cruz J, Lorente J (1991) Main features of the sea-breeze in Barcelona. Meteorol Atmos Phys 46:175–179

    Article  Google Scholar 

  • Ruelle D (1990) Deterministic chaos: the science and the fiction. Proc R Soc Lond Ser A 427:241–248

    Article  Google Scholar 

  • Seneviratne SI, Lüthi D, Litschi M, Schär CH (2006) Land-atmosphere coupling and climate change in Europe. Nature 443: doi:10.1038/nature05095

  • Serra C, Burgueño A, Lana X (2001) Analysis of maximum and minimum daily temperatures recorded at Fabra Observatory (Barcelona, NE Spain) in the period 1917–1988. Int J Climatol 21(5):617–636

    Article  Google Scholar 

  • Serra C, Martínez MD, Lana X, Burgueño A (2010) Extreme normalised residuals of daily temperatures in Catalonia (NE Spain): sampling strategies, return periods and clustering processes. Theor Appl Climatol 101:1–17

    Article  Google Scholar 

  • Shcherbakov R, Van Alasburg J, Rundle JB, Turcotte DL (2006) Correlations in aftershocks and seismicity patterns. Tectonophys 413:53–62

    Article  Google Scholar 

  • Sivakumar B (2004) Chaos theory in geophysics: past, present and future. Chaos, Solit Fractal 19:441–462

    Article  Google Scholar 

  • Sneyers R (1990) On the statistical analysis of series of observations, vol 415. WMO. World Meteorological Organization, Geneve, p 192

    Google Scholar 

  • Stephenson DB, Pavan P, Bojariu R (2000) Is the North Atlantic oscillation a random walk? Int J Climatol 20:1–18

    Article  Google Scholar 

  • Stoop R, Meier PF (1988) Evaluation of Lyapunov exponents and scaling factors from time series. J Opt Soc Am 5:1037–1045

    Article  Google Scholar 

  • Turcotte DL (1997) Fractal and chaos in geology and geophysics (2nd edition). Cambridge University Press, New York, 398pp

    Book  Google Scholar 

  • Von Neumann J (1941) Distribution of the ratio of the mean square successive difference to the variance. Annal Mathemat Stat 13:367–395

    Article  Google Scholar 

  • Voss RF (1985) Random fractals: characterization and measurement. In: Pynn R, Skjeltrop A (eds) Scaling phenomena in disordered systems. Plenum Press, New York, pp 1–11

    Google Scholar 

  • Wang Q (1995) Correlation dimension estimates of global and local temperature data. J Appl Meteorol 34:2556–2564

    Article  Google Scholar 

  • Wigins S (2000) Introduction to applied nonlinear dynamical systems and chaos. Springer, New York, 843pp

    Google Scholar 

  • Zeng X, Pielke RA, Eykholt R (1992) Estimating the fractal dimension and the predictability of the atmosphere. J Atmos Sci 48:649–659

    Article  Google Scholar 

  • Zeng X, Pielke RA, Eykholt R (1993) Chaos theory and its applications to the atmosphere. Bull Am Meteorol Soc 74:631–644

    Article  Google Scholar 

  • Zurbenko I, Porter PS, Rao ST, Ku JY, Gui R, Eskridge RE (1996) Detecting discontinuities in time series of upper-air data: development and demonstration of an adaptive filter technique. J Climate 9:3548–3560

    Article  Google Scholar 

Download references

Acknowledgments

Authors are indebted to the Fabra Observatory (Reial Acadèmia de Ciències i Arts de Barcelona), who have compiled the temperature records and gently transferred the database to the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Lana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lana, X., Burgueño, A., Serra, C. et al. Fractal structure and predictive strategy of the daily extreme temperature residuals at Fabra Observatory (NE Spain, years 1917–2005). Theor Appl Climatol 121, 225–241 (2015). https://doi.org/10.1007/s00704-014-1236-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1236-6

Keywords

Navigation