Skip to main content

Advertisement

Log in

An improved model for soil surface temperature from air temperature in permafrost regions of Qinghai-Xizang (Tibet) Plateau of China

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

Soil temperature plays a key role in hydro-thermal processes in environments and is a critical variable linking surface structure to soil processes. There is a need for more accurate temperature simulation models, particularly in Qinghai-Xizang (Tibet) Plateau (QXP). In this study, a model was developed for the simulation of hourly soil surface temperatures with air temperatures. The model incorporated the thermal properties of the soil, vegetation cover, solar radiation, and water flux density and utilized field data collected from Qinghai-Xizang (Tibet) Plateau (QXP). The model was used to simulate the thermal regime at soil depths of 5 cm, 10 cm and 20 cm and results were compared with those from previous models and with experimental measurements of ground temperature at two different locations. The analysis showed that the newly developed model provided better estimates of observed field temperatures, with an average mean absolute error (MAE), root mean square error (RMSE), and the normalized standard error (NSEE) of 1.17 °C, 1.30 °C and 13.84 %, 0.41 °C, 0.49 °C and 5.45 %, 0.13 °C, 0.18 °C and 2.23 % at 5 cm, 10 cm and 20 cm depths, respectively. These findings provide a useful reference for simulating soil temperature and may be incorporated into other ecosystem models requiring soil temperature as an input variable for modeling permafrost changes under global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Berg A, Lintner BR, Findell KL, Malyshev S, Loikith PC, Gentine P (2014) Impact of soil moisture–atmosphere interactions on surface temperature distribution. J Clim 27:7976–7993. doi:10.1175/jcli-d-13-00591.1

    Article  Google Scholar 

  • Bhumralkar CM (1975) Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model. J Appl Meteorol Clim 14:1246–1258. doi:10.1175/1520-0450(1975)

    Article  Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464:579–632. doi:10.1038/nature08930

    Article  Google Scholar 

  • Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO(2) growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104:18866–18870. doi:10.1073/pnas.0702737104

    Article  Google Scholar 

  • Gao ZQ (2005) Determination of soil heat flux in a Tibetan short-grass prairie. Bound Layer Meteorol 114:165–178. doi:10.1007/s10546-004-8661-5

    Article  Google Scholar 

  • Gao ZQ, Fan XG, Bian LG (2003) An analytical solution to one-dimensional thermal conduction–convection in soil. Soil Sci 168:99–107. doi:10.1097/01.ss.0000055305.23789.be

    Article  Google Scholar 

  • Gao ZQ, Lenschow DH, Horton R, Zhou MY, Wang LL, Wen J (2008) Comparison of two soil temperature algorithms for a bare ground site on the Loess Plateau in China. J Geophys Res Atmos. doi:10.1029/2008jd010285

    Google Scholar 

  • Guglielmin M, Dramis F (1999) Permafrost as a climatic indicator in northern Victoria Land, Antarctica. In: Jacka TH (ed) Annals of glaciology, pp 131–135. doi:10.3189/172756499781821111

  • Hansson K, Simunek J, Mizoguchi M, Lundin LC, van Genuchten MT (2004) Water flow and heat transport in frozen soil: numerical solution and freeze-thaw applications. Vadose Zone J3:693–704

    Google Scholar 

  • Holmes TRH, Owe M, De Jeu RAM, Kooi H (2008) Estimating the soil temperature profile from a single depth observation: a simple empirical heatflow solution. Water Resour Res 44:2412. doi:10.1029/2007wr005994

    Article  Google Scholar 

  • Hopmans JW, Simunek J, Bristow KL (2002) Indirect estimation of soil thermal properties and water flux using heat pulse probe measurements: geometry and dispersion effects. Water Resour Res. doi:10.1029/2000wr000071

    Google Scholar 

  • Hu GJ, Zhao L, Li R, Wu TH, Xiao Y, Jiao KQ, Qiao YP, Jiao YL (2013) The water-thermal characteristics of frozen soil under freeze-thaw based on CoupModel. Sci Geogr Sin 33:356–362

    Google Scholar 

  • Hu GJ, Zhao L, Wu XD, Li R, Wu TH, Xie CW, Qiao YP, Shi JZ, Li WP, Cheng GD (2016) New Fourier-series-based analytical solution to the conduction-convection equation to calculate soil temperature, determine soil thermal properties, or estimate water flux. Int J Heat Mass Transf 95:815–823

    Article  Google Scholar 

  • Huang F, Zhan WF, Ju WM, Wang ZH (2014) Improved reconstruction of soil thermal field using two-depth measurements of soil temperature. J Hydrol 519

  • IPCC (2007) Climate change synthesis report. IPCC, Cambridge

  • Jaynes DB (1990) Temperature variation effect on field-measured infiltration. Soil Sci Soc Am J 305

  • Jencso KG, McGlynn BL, Gooseff MN, Wondzell SM, Bencala KE, Marshall LA (2009) Hydrologic connectivity between landscapes and streams: transferring reach-and plot-scale understanding to the catchment scale. Water Resour Res. doi:10.1029/2008wr007225

    Google Scholar 

  • Kang S, Kim S, Oh S, Lee D (2000) Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature. For Ecol Manag 136:173–184. doi:10.1016/s0378-1127(99)00290-x

    Article  Google Scholar 

  • Lewis T (1998) The effect of deforestation on ground surface temperatures. Glob Planet Change 18:1–13. doi:10.1016/s0921-8181(97)00011-8

    Article  Google Scholar 

  • Li GP, Zhao BJ, Lu JH (2002) Characteristics of bulk transfer coefficients over the Tibetan Plateau. Acta Meteorol Sin 60:60–67

    Google Scholar 

  • Liang LL, Riveros-Iregui DA, Emanuel RE, McGlynn BL (2014) A simple framework to estimate distributed soil temperature from discrete air temperature measurements in data-scarce regions. J Geophys Res Atmos 119:407–417. doi:10.1002/2013jd020597

    Article  Google Scholar 

  • Lu JH, Ji JJ (2002) A simulation study of atmosphere–vegetation interaction over the tibetan plateau part II: net primary productivity and leaf area index. Sci Atmos Sin 26:255–262

    Google Scholar 

  • Mihalakakou G (2002) On estimating soil surface temperature profiles. Energy Build 34:251–259. doi:10.1016/s0378-7788(01)00089-5

    Article  Google Scholar 

  • Nan ZT, Li SX, Cheng GD (2005) Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years. Sci China Earth Sci 48:797–804. doi:10.1360/03yd0258

    Article  Google Scholar 

  • Niu GY, Sun SF, Hong ZX (1997) Numerical simulation on water and heat transport in the desert soil and atmospheric boundary layer. Acta Meteorol Sin 55:398–405

    Google Scholar 

  • Passerat De Silans AMB, Monteny BA, Lhomme JP (1996) Apparent soil thermal diffusivity, a case study: HAPEX—Sahel experiment. Agric For Meteorol 81:201–216

    Article  Google Scholar 

  • Paul KI, Polglase PJ, Smethurst PJ, O’Connell AM, Carlyle CJ, Khanna PK (2004) Soil temperature under forests: a simple model for predicting soil temperature under a range of forest types. Agric For Meteorol 121:167–182. doi:10.1016/j.agrformet.2003.08.030

    Article  Google Scholar 

  • Pavlov AV (1994) Current changes of climate and permafrost in the arctic and sub-arctic of Russia. Permafr Periglac 5:101–110. doi:10.1002/ppp.3430050204

    Article  Google Scholar 

  • Plauborg F (2002) Simple model for 10 cm soil temperature in different soils with short grass. Eur J Agron 17:173–179. doi:10.1016/s1161-0301(02)00006-0

    Article  Google Scholar 

  • Qian BD, Gregorich EG, Gameda S, Hopkins DW, Wang XL (2011) Observed soil temperature trends associated with climate change in Canada. J Geophys Res Atmos. doi:10.1029/2010jd015012

    Google Scholar 

  • Riveros-Iregui DA, McGlynn BL, Marshall LA, Welsch DL, Emanuel RE, Epstein HE (2011) A watershed-scale assessment of a process soil CO2 production and efflux model. Water Resour Res. doi:10.1029/2010wr009941

    Google Scholar 

  • Shao MA, Horton R, Jaynes DB (1998) Analytical solution for one-dimensional heat conduction–convection equation. Soil Sci Soc Am J 62:123–128

    Article  Google Scholar 

  • Thornton PE, Law BE, Gholz HL, Clark KL, Falge E, Ellsworth DS, Golstein AH, Monson RK, Hollinger D, Falk M, Chen J, Sparks JP (2002) Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needle leaf forests. Agric For Meteorol 113:185–222. doi:10.1016/s0168-1923(02)00108-9

    Article  Google Scholar 

  • Thunholm B (1990) A Comparison of measured and simulated soil-temperature using air-temperature and soil surface-energy balance as boundary-conditions. Agric For Meteorol 53:59–72. doi:10.1016/0168-1923(90)90124-o

    Article  Google Scholar 

  • Toosi ER, Schmidt JP, Castellano MJ (2014) Soil temperature is an important regulatory control on dissolved organic carbon supply and uptake of soil solution nitrate. Eur J Soil Biol 61:68–71. doi:10.1016/j.ejsobi.2014.01.003

    Article  Google Scholar 

  • Verhoef A (2004) Remote estimation of thermal inertia and soil heat flux for bare soil. Agric For Meteorol 123:221–236. doi:10.1016/j.agrformet.2003.11.005

    Article  Google Scholar 

  • Wang LL (2007) The impact of the soil water vertical movement on the soil temperature. Nanjing University of Information Science & Technology, Jiangsu

  • Wang TM, Wu GX, Wan RJ (2008) Influence of the mechanical and thermal forcing of tibetan plateau on the circulation of the Asian summer monsoon area. Plateau Meteorol 27:1–9

    Google Scholar 

  • Wang LL, Gao ZQ, Horton R, Lenschow DH, Meng K, Jaynes DB (2012) An analytical solution to the one-dimensional heat conduction–convection equation in soil. Soil Sci Soc Am J 76:1978–1986. doi:10.2136/sssaj2012.0023N

    Article  Google Scholar 

  • Wu GX, Mao JY, Duan AM, Zhang Q (2004) Recent progress in the study on the impacts of Tibetan plateau on Asian summer climate. Acta Meteorol Sin 62:528–540

    Google Scholar 

  • Xiao Y, Zhao L, Dai YJ, Li R, Pang QQ, Yao JM (2013) Representing permafrost properties in CoLM for the Qinghai-Xizang (Tibetan) Plateau. Cold Reg Sci Technol 87:68–77. doi:10.1016/j.coldregions.2012.12.004

    Article  Google Scholar 

  • Yang K, Bai D, Hao XQ, Chen B (2009) Identification of soil hydraulic properties based on genetic algorithm. Trans Chin Soc Agric Eng 25:32–35

    Google Scholar 

  • Yang Y, Chen RS, Ji XB (2010) Heat and water transfer processes on alpine meadow frozen grounds of Heihe mountainous in Northwest China. Adv Water Sci 21:30–34

    Google Scholar 

  • Zhang TJ, Barry RG, Gilichinsky D, Bykhovets SS, Sorokovikov VA, Ye JP (2001) An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia. Clim Change 49:41–76. doi:10.1023/a:1010790203146

    Article  Google Scholar 

  • Zheng DL, Hunt ER Jr, Running SW (1993) A daily soil temperature model based on air temperature and precipitation for continental applications. Clim Res 2:183–191. doi:10.3354/cr002183

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Major Scientific Project of China (2013CBA01803), Science Fund for Creative Research Groups of National Natural Science Foundation of China (No. 41421061), the key project of the Chinese Academy of Sciences (KJZD-EW-G03-02) and the Foundation of One Hundred Person Project of The Chinese Academy of Sciences (51Y551831). The authors gratefully thank to West Light Foundation of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhao.

Additional information

Responsible Editor: J.-F. Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Wu, X., Zhao, L. et al. An improved model for soil surface temperature from air temperature in permafrost regions of Qinghai-Xizang (Tibet) Plateau of China. Meteorol Atmos Phys 129, 441–451 (2017). https://doi.org/10.1007/s00703-016-0468-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-016-0468-7

Keywords

Navigation