Skip to main content
Log in

Genetic and environmental mouse models of autism reproduce the spectrum of the disease

  • Psychiatry and Preclinical Psychiatric Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Genetic and environmental factors increase autism spectrum disorder (ASD) incidence, and this has led to the generation of corresponding animal models, with some showing strong construct and face validity. This short review focuses on results we have recently obtained with environmental and genetic mouse models of ASD and that are the valproic acid, the poly I:C and the Shank 3 models. This has allowed us to provide a comparative description of these widely used animal models providing an interesting perspective as to the pros and cons of each one of them, in our experimental settings. In these papers, we focused on motor and gait disorders which are currently not included in the diagnosis criteria, but which may provide new insights to ASD pathophysiology potentially leading to innovative therapies for a disease that currently has none. In all these models, we reported behavioral, cellular and molecular alterations related to the cerebellum. Motor and gait deficits were observed to various degrees in animal models and, when strongly present, they were correlated to the severity of social deficits as well as to the number of cerebellar Purkinje cells. Additionally, we also reported that, like in humans, males are more severely affected than females in these ASD models. These findings, along with an increasing body of literature, open new hopes in the ASD field pointing to brain regions, such the cerebellum, that are at the crossroads between cognitive, social and motor deficits. Targeting these brain regions and their underlying pathways and synaptic connections may prove of significant benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al Sagheer T, Haida O, Balbous A, Francheteau M, Matas M, Fernagut P-O, Jaber M (2018) Motor impairments correlate with social deficits and restricted neuronal loss in an environmental model of autism. Int J Neuropsychopharmacol 21(9):871–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Association, Washington, D.C

    Book  Google Scholar 

  • Arndt TL, Stodgell CJ, Rodier PM (2005) The teratology of autism. Int J Dev Neurosci 23(2–3):189–199

    Article  CAS  PubMed  Google Scholar 

  • Asperger H (1944) Autistischen Psychopathen. Kindesalter Arch Psychiatr Nervenkr 117:76–136

    Article  Google Scholar 

  • Atladóttir HÓ, Thorsen P, Østergaard L, Schendel DE, Lemcke S, Abdallah M, Parner ET (2010) Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord 40(12):1423–1430

    Article  PubMed  Google Scholar 

  • Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P (1998) A clinicopathological study of autism. Brain J Neurol 121(Pt 5):889–905

    Article  Google Scholar 

  • Baron-Cohen S, Knickmeyer RC, Belmonte MK (2005) Sex differences in the brain: implications for explaining autism. Science 310(5749):819–823

    Article  CAS  PubMed  Google Scholar 

  • Betancur C, Buxbaum JD (2013) SHANK3 haploinsufficiency: a “common” but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Mol Autism 4(1):17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bey AL, Jiang YH (2014) Overview of mouse models of autism spectrum disorders. Curr Protoc Pharmacol 66(1):5–66

    Article  PubMed Central  Google Scholar 

  • Boska P (2010) Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun 24(6):881–897

    Article  Google Scholar 

  • Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL, Takahashi N, Kajiwara Y et al (2010) Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism 1(1):15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrows EL, Koyama L, May C, Hill-Yardin EL, Hannan AJ (2020) Environmental enrichment modulates affiliative and aggressive social behaviour in the neuroligin-3 R451C mouse model of autism spectrum disorder. Pharmacol Biochem Behav 195:172955

    Article  CAS  PubMed  Google Scholar 

  • Chaste P, Leboyer M (2012) Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin Neurosci 14(3):281–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Christianson AL, Chesler N, Kromberg JG (1994) Fetal valproate syndrome: clinical and neuro- developmental features in two sibling pairs. Dev Med Child Neurol 36(4):361–369

    Article  CAS  PubMed  Google Scholar 

  • Cook JL, Blakemore SJ, Press C (2013) Atypical basic movement kinematics in autism spectrum conditions. Brain J Neurol 136(Pt 9):2816–2824

    Article  Google Scholar 

  • Courchesne E (1997) Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol 7(2):269–278

    Article  CAS  PubMed  Google Scholar 

  • D’Mello AM, Stoodley CJ (2015) Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci 9:408

    PubMed  PubMed Central  Google Scholar 

  • Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G et al (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39(1):25–27

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A et al (2012) Consensus paper: pathological role of the cerebellum in autism. Cerebellum 11(3):777–807

    Article  PubMed  PubMed Central  Google Scholar 

  • Fournier KA, Hass CJ, Naik SK, Lodha N, Cauraugh JH (2010) Motor coordination in autism spectrum disorders: a synthesis and meta-analysis. J Autism Dev Disord 40(10):1227–1240

    Article  PubMed  Google Scholar 

  • Haida O, Al Sagheer T, Balbous A, Francheteau M, Matas M, Soria F, Fernagut P-O, Jaber M (2019) Sex-dependent behavioral deficits and neuropathology in a maternal immune activation model of autism. Transl Psychiatry 9(1):124

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallmayer J (2011) Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 68(11):1095

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeon SJ, Gonzales EL, Mabunga DFN, Valencia ST, Kim DG, Kim Y, Adil KJL, Shin D, Park D, Shin CY (2018) Sex-specific behavioral features of rodent models of autism spectrum disorder. Exp Neurobiol 27(5):321–343

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang Y-H, Ehlers MD (2013) Modeling autism by SHANK gene mutations in mice. Neuron 78(1):8–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalueff AV, Stewart AM, Song C, Berridge KC, Graybiel AM, Fentress JC (2016) Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci 17(1):45–59

    Article  CAS  PubMed  Google Scholar 

  • Kanner L (1943) Autistic disturbances of affective contact. Acta Paedopsychiatr 35:100–136

    Google Scholar 

  • Kaur M, Srinivasan SM, Bhat AN (2018) Comparing motor performance, praxis, coordination, and interpersonal synchrony between children with and without autism spectrum disorder. Res Dev Disabil 72:79–95

    Article  PubMed  Google Scholar 

  • Kentner AC, Bilbo SD, Brown AS, Hsiao EY, McAllister AK, Meyer U, Pearce BD, Pletnikov MV, Yolken RH, Bauman MD (2019) Maternal immune activation: reporting guidelines to improve the rigor, reproducibility, and transparency of the model. Neuropsychopharmacology 44(2):245–258

    Article  PubMed  Google Scholar 

  • Kim JW, Park K, Kang RJ, Gonzales EL, Oh HA, Seung H, Ko MJ, Cheong JH, Chung C, Shin CY (2019) Gene-environment interaction counterbalances social impairment in mouse models of autism. Sci Rep 9(1):11490

    Article  PubMed  PubMed Central  Google Scholar 

  • Kouser M, Speed HE, Dewey CM, Reimers JM, Widman AJ, Gupta N, Liu S et al (2013) Loss of predominant Shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission. J Neurosci 33(47):18448–18468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon H-K, Choi GB, Huh JR (2022) Maternal inflammation and its ramifications on fetal neurodevelopment. Trends Immunol 43(3):230–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacaria M, Corinne S, Gu W, Paylor R, Lupski JR (2012) Enriched rearing improves behavioral responses of an animal model for CNV-based autistic-like traits. Hum Mol Genet 21(14):3083–3096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S, Giuliano F et al (2014) Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet 10(9):e1004580

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin LZ, Zhan X-L, Jin C-Y, Liang J-H, Jing J, Dong G-H (2022) The epidemiological evidence linking exposure to ambient particulate matter with neurodevelopmental disorders: a systematic review and meta-analysis. Environ Res 209:112876

    Article  CAS  PubMed  Google Scholar 

  • Loomes R, Hull L, Polmear W, Mandy L (2017) What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry 56(6):466–474

    Article  PubMed  Google Scholar 

  • Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J (2018) Autism spectrum disorder. Lancet 392(10146):508–520

    Article  PubMed  PubMed Central  Google Scholar 

  • Mabunga DFN, Gonzales ELT, Kim J-W, Kim KC, Shin CY (2015) Exploring the validity of valproic acid animal model of autism. Exp Neurobiol 24(4):285–300

    Article  PubMed  PubMed Central  Google Scholar 

  • Madore C, Leyrolle Q, Lacabanne C, Benmamar-Badel A, Joffre C, Nadjar A, Layé S (2016) Neuroinflammation in autism: plausible role of maternal inflammation, dietary omega 3, and microbiota. Neural Plast 2016:3597209

    Article  PubMed  PubMed Central  Google Scholar 

  • Matas E, Maisterrena A, Thabault M, Balado E, Francheteau M, Balbous A, Galvan L, Jaber M (2021) Major motor and gait deficits with sexual dimorphism in a Shank3 mutant mouse model. Mol Autism 12(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy MM (2016) Sex differences in the developing brain as a source of inherent risk. Dialogues Clin Neurosci 18(4):361–372

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer U (2014) Prenatal poly(I:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry 75(4):307–315

    Article  CAS  PubMed  Google Scholar 

  • Miani A, Imbriani G, De Filippis G, De Giorgi D, Peccarisi L, Colangelo M, Pulimeno M et al (2021) Autism spectrum disorder and prenatal or early life exposure to pesticides: a short review. Int J Environ Res Public Health 18(20):10991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell EJ, Thomson DM, Openshaw RL, Bristow GC, Dawson N, Pratt JA, Morris BJ (2020) Drug-responsive autism phenotypes in the 16p11.2 deletion mouse model: a central role for gene-environment interactions. Sci Rep 10(1):12303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteiro P, Feng G (2017) SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci 18(3):147–157

    Article  CAS  PubMed  Google Scholar 

  • Mostofsky SH, Powell SK, Simmonds DJ, Goldberg MC, Caffo B, Pekar JJ (2009) Decreased connectivity and cerebellar activity in autism during motor task performance. Brain J Neurol 132(Pt 9):2413–2425

    Article  Google Scholar 

  • Nicolini C, Fahnestock M (2018) The valproic acid-induced rodent model of autism. Exp Neurol 299:217–227

    Article  CAS  PubMed  Google Scholar 

  • Ozonoff S, Young GS, Goldring S, Greiss-Hess L, Herrera AM, Steele J, Macari S, Hepburn S, Rogers SJ (2008) Gross motor development, movement abnormalities, and early identification of autism. J Autism Dev Disord 38(4):644–656

    Article  PubMed  Google Scholar 

  • Patterson PH (2009) Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav Brain Res 204(2):313–321

    Article  CAS  PubMed  Google Scholar 

  • Petroni V, Subashi E, Premoli M, Wöhr M, Crusio WE, Lemaire V, Pietropaolo S (2022) Autistic-like behavioral effects of prenatal stress in juvenile Fmr1 mice: the relevance of sex differences and gene-environment interactions. Sci Rep 12(1):7269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276(39):36734–36741

    Article  CAS  PubMed  Google Scholar 

  • Pierce K, Courchesne E (2001) Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol Psychiatry 49(8):655–664

    Article  CAS  PubMed  Google Scholar 

  • Reisinger S, Khan D, Kong E, Berger A, Pollak A, Pollak DD (2015) The poly(I:C)-induced maternal immune activation model in preclinical neuropsychiatric drug discovery. Pharmacol Ther 149:213–226

    Article  CAS  PubMed  Google Scholar 

  • Robinson EB, Lichtenstein P, Anckarsäter H, Happé F, Ronald A (2013) Examining and interpreting the female protective effect against autistic behavior. Proc Natl Acad Sci 110(13):5258–5262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodier PM, Ingram JL, Tisdale B, Nelson S, Romano J (1996) Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol 370(2):247–261

    Article  CAS  PubMed  Google Scholar 

  • Rogers DC, Fisher EMC, Brown SDM, Peters J, Hunter AJ, Martin JE (1997) Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome 8(10):711–713

    Article  CAS  PubMed  Google Scholar 

  • Schneider T, Przewłocki R (2005) Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30(1):80–89

    Article  CAS  PubMed  Google Scholar 

  • Stoodley CJ, D’Mello AM, Ellegood J, Jakkamsetti V, Liu P, Nebel MB, Gibson JM et al (2017) Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci 20(12):1744–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57(1):67–81

    Article  CAS  PubMed  Google Scholar 

  • Wagner GC, Reuhl KR, Cheh M, McRae P, Halladay AK (2006) A new neurobehavioral model of autism in mice: pre- and postnatal exposure to sodium valproate. J Autism Dev Disord 36(6):779–793

    Article  PubMed  Google Scholar 

  • Wang X, Kery R, Xiong Q (2018) Synaptopathology in autism spectrum disorders: complex effects of synaptic genes on neural circuits. Prog Neuropsychopharmacol Biol Psychiatry 84:398–415

    Article  PubMed  Google Scholar 

  • Wilson HL, Wong ACC, Shaw SR, Tse W-Y, Stapleton GA, Phelan MC, Hu S, Marshall J, McDermid HE (2003) Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J Med Genet 40(8):575–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerbo O, Iosif A-M, Delwiche L, Walker C, Hertz-Picciotto I (2011) Month of conception and risk of autism. Epidemiology 22(4):469–475

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research leading to the results detailed in this review received funding from the Fondation pour la Recherche Médicale and the CPER-FEDER program. MJ is grateful for the Prebios animal facility staff for help and dedication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Jaber.

Ethics declarations

Conflict of interest

MJ declares that he has no financial or non-financial interests that are directly or indirectly related to the reported work in this review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaber, M. Genetic and environmental mouse models of autism reproduce the spectrum of the disease. J Neural Transm 130, 425–432 (2023). https://doi.org/10.1007/s00702-022-02555-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-022-02555-9

Keywords

Navigation