Skip to main content
Log in

Genetic risk factors for autism-spectrum disorders: a systematic review based on systematic reviews and meta-analysis

  • Psychiatry and Preclinical Psychiatric Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Background

Based on recent evidence, more than 200 susceptibility genes have been identified to be associated with autism until now. Correspondingly, cytogenetic abnormalities have been reported for almost every chromosome. While the results of multiple genes associated with risk factors for autism are still incomplete, this paper systematically reviews published meta-analyses and systematic reviews of evidence related to autism occurrence.

Method

Literature search was conducted in the PubMed system, and the publication dates were limited between January 2000 and July 2020. We included a meta-analysis and systematic review that assessed the impact of related gene variants on the development of autism. After screening, this comprehensive literature search identified 31 meta-analyses and ten systematic reviews. We arranged the genes related to autism in the published studies according to the order of the chromosomes, and based on the results of a meta-analysis and systematic review, we selected 6 candidate genes related to ASD, namely MTHFR C677T, SLC25A12, OXTR, RELN, 5-HTTLPR, SHANK, including basic features and functions. In addition to these typical genes, we have also listed candidate genes that may exist on almost every chromosome that are related to autism.

Results

We found that the results of several literature reviews included in this study showed that the MTHFR C667T variant was a risk factor for the occurrence of ASD, and the results were consistent. The results of studies on SLC25A12 variation (rs2056202 and rs2292813) and ASD risk were inconsistent but statistically significant. No association of 5-HTTLPR was found with autism, but when subgroup analysis was performed according to ethnicity, the association was statistically significant. RELN variants (rs362691 and rs736707) were consistent with ASD risk studies, but some of the results were not statistically significant.

Conclusion

This review summarized the well-known ASD candidate genes and listed some new genes that need further study in larger sample sets to improve our understanding of the genetic basis of ASD, but sample size and heterogeneity remain major limiting factors in some genome-wide association studies. We also found that common genetic variants in some genes may be co-risk factors for autism or other neuropsychiatric disorders when we collated these results. It is worth considering screening for these mutations in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abedinzadeh M, Zare-Shehneh M, Neamatzadeh H, Abedinzadeh M, Karami H (2015) Association between MTHFR C677T Polymorphism and Risk of Prostate Cancer: Evidence from 22 Studies with 10,832 Cases and 11,993 Controls. Asian Pac J Cancer Prev 16(11):4525–4530

    Article  PubMed  Google Scholar 

  • Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9(5):341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki Y, Cortese S (2016) Mitochondrial aspartate/glutamate carrier SLC25A12 and autism spectrum disorder: a meta-analysis. Mol Neurobiol 53(3):1579–1588

    Article  CAS  PubMed  Google Scholar 

  • Bakermans-Kranenburg MJ, van Ijzendoorn MH (2014) A sociability gene? Meta-analysis of oxytocin receptor genotype effects in humans. Psychiatr Genet 24(2):45–51

    Article  CAS  PubMed  Google Scholar 

  • Barbato JC, Catanescu O, Murray K, DiBello PM, Jacobsen DW (2007) Targeting of metallothionein by l-homocysteine: a novel mechanism for disruption of zinc and redox homeostasis. Arterioscler Thromb Vasc Biol 27(1):49–54

    Article  CAS  PubMed  Google Scholar 

  • Anitha A, Nakamura K, Thanseem I, Yamada K, Iwayama Y, Toyota T, Matsuzaki H, Miyachi T, Yamada S, Tsujii M, Tsuchiya KJ (2012) Brain region-specific altered expression and association of mitochondria-related genes in autism. Mol Autism 3(12):1–2

    Google Scholar 

  • Bramswig NC, Lüdecke HJ, Pettersson M, Albrecht B, Bernier RA, Cremer K et al (2017) Identification of new TRIP12 variants and detailed clinical evaluation of individuals with non-syndromic intellectual disability with or without autism. Hum Genet 136(2):179–192

    Article  CAS  PubMed  Google Scholar 

  • Cannell JJ, Grant WB (2013) What is the role of vitamin D in autism? Dermatoendocrinol 5(1):199–204

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro K, Klein Lda S, Baronio D, Gottfried C, Riesgo R, Perry IS (2016) Folic acid and autism: what do we know? Nutr Neurosci 19(7):310–317

    Article  CAS  PubMed  Google Scholar 

  • Cataldo I, Azhari A, Esposito G (2018) A review of oxytocin and arginine-vasopressin receptors and their modulation of autism spectrum disorder. Front Mol Neurosci 11:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavalli E, Yang H, Wu X (2020) The correlation between vitamin D receptor (VDR) gene polymorphisms and autism: a meta-analysis. Brain Sci 70(2):260–268

    Google Scholar 

  • Chakrabarti S, Fombonne E (2005) Pervasive developmental disorders in preschool children: confirmation of high prevalence. Am J Psychiatry 162(6):1133–1141

    Article  PubMed  Google Scholar 

  • Chen N, Bao Y, Xue Y, Sun Y, Hu D, Meng S et al (2017) Meta-analyses of RELN variants in neuropsychiatric disorders. Behav Brain Res 332:110–119

    Article  CAS  PubMed  Google Scholar 

  • Christensen DL, Baio J, Van Naarden Braun K, Bilder D, Charles J, Constantino JN et al (2016) Prevalence and characteristics of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 Sites, United States, 2012. MMWR Surveill Summ 65(3):1–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung RH, Ma D, Wang K, Hedges DJ, Jaworski JM, Gilbert JR et al (2011) An X chromosome-wide association study in autism families identifies TBL1X as a novel autism spectrum disorder candidate gene in males. Mol Autism 2(1):18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degenhardt F, Niklowitz P, Szymczak S, Jacobs G, Lieb W, Menke T et al (2016) Genome-wide association study of serum coenzyme Q10 levels identifies susceptibility loci linked to neuronal diseases. Hum Mol Genet 25(13):2881–2891

    CAS  PubMed  Google Scholar 

  • Do LLTN (2011) American psychiatric association diagnostic and statistical manual of mental disorders (DSM-IV). In: Goldstein S, Naglieri JA (eds) Encyclopedia of child behavior and development. Springer, Boston, pp 84–85

    Google Scholar 

  • Elsabbagh M, Divan G, Koh Y-J, Kim YS, Kauchali S, Marcín C et al (2012) Global prevalence of autism and other pervasive developmental disorders. Autism Res 5(3):160–179

    Article  PubMed  PubMed Central  Google Scholar 

  • Fombonne E (2009) Epidemiology of pervasive developmental disorders. Pediatr Res 65(6):591–598

    Article  PubMed  Google Scholar 

  • Freitag CM (2007) The genetics of autistic disorders and its clinical relevance: a review of the literature. Mol Psychiatry 12(1):2–22

    Article  CAS  PubMed  Google Scholar 

  • Freitag CM, Staal W, Klauck SM, Duketis E, Waltes R (2010) Genetics of autistic disorders: review and clinical implications. Eur Child Adolesc Psychiatry 19(3):169–178

    Article  PubMed  Google Scholar 

  • Frustaci A, Neri M, Cesario A, Adams JB, Domenici E, Dalla Bernardina B et al (2012) Oxidative stress-related biomarkers in autism: systematic review and meta-analyses. Free Radic Biol Med 52(10):2128–2141

    Article  CAS  PubMed  Google Scholar 

  • Gabriele S, Sacco R, Persico AM (2014) Blood serotonin levels in autism spectrum disorder: a systematic review and meta-analysis. Eur Neuropsychopharmacol 24(6):919–929

    Article  CAS  PubMed  Google Scholar 

  • Gardener H, Spiegelman D, Buka SL (2011) Perinatal and neonatal risk factors for autism: a comprehensive meta-analysis. Pediatrics 128(2):344–355

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB et al (2014) Most Genetic Risk for Autism Resides with Common Variation. Nat Genet 46(8):881–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glessner JT, Li J, Wang D, March M, Lima L, Desai A et al (2017) Copy number variation meta-analysis reveals a novel duplication at 9p24 associated with multiple neurodevelopmental disorders. Genome Med 9(1):106–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Goes FS, Pirooznia M, Parla JS, Kramer M, Ghiban E, Mavruk S et al (2016) Exome sequencing of familial bipolar disorder. JAMA Psychiat 73(6):590–597

    Article  Google Scholar 

  • Goldson E (2016) Advances in Autism-2016. Adv Pediatr 63(1):333–355

    Article  PubMed  Google Scholar 

  • Grabrucker AM, Schmeisser MJ, Schoen M, Boeckers TM (2011) Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol 21(10):594–603

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Samuels JF, Wang Y, Cao H, Ritter M, Nestadt PS et al (2017) Polygenic risk score and heritability estimates reveals a genetic relationship between ASD and OCD. Eur Neuropsychopharmacol 27(7):657–666

    Article  CAS  PubMed  Google Scholar 

  • Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T et al (2011) Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 68(11):1095–1102

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang CH, Santangelo SL (2008) Autism and serotonin transporter gene polymorphisms: a systematic review and meta-analysis. Am J Med Genet B Neuropsychiatr Genet 147B(6):903–913

    Article  PubMed  Google Scholar 

  • Huguet G, Ey E, Bourgeron T (2013) The genetic landscapes of autism spectrum disorders. Annu Rev Genom Hum Genet 14:191–213

    Article  CAS  Google Scholar 

  • Jill James S, P. C., Stepan Melnyk, Stefanie Jernigan, Laurette Janak, David W Gaylor, James A Neubrander. (2004) Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 80:1611–1617

    Article  PubMed  Google Scholar 

  • Kranz TM, Kopp M, Waltes R, Sachse M, Duketis E, Jarczok TA et al (2016) Meta-analysis and association of two common polymorphisms of the human oxytocin receptor gene in autism spectrum disorder. Autism Res 9(10):1036–1045

    Article  PubMed  Google Scholar 

  • Kumsta R, Heinrichs M (2013) Oxytocin, stress and social behavior: neurogenetics of the human oxytocin system. Curr Opin Neurobiol 23(1):11–16

    Article  CAS  PubMed  Google Scholar 

  • Lai M-C, Lombardo MV, Baron-Cohen S (2014) Autism. Lancet 383(9920):896–910

    Article  PubMed  Google Scholar 

  • Lammert DB, Howell BW (2016) RELN mutations in autism spectrum disorder. Front Cell Neurosci 10:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S et al (2014) Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet 10(9):e1004580

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim S, Naisbitt S, Yoon J, Hwang JI, Suh PG, Sheng M et al (1999) Characterization of the Shank family of synaptic proteins. Multiple genes, alternative splicing, and differential expression in brain and development. J Biol Chem 274(41):29510–29518

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yang A, Zhang Q, Yang G, Yang W, Lei H et al (2015a) Association between genetic variants in SLC25A12 and risk of autism spectrum disorders: an integrated meta-analysis. Am J Med Genet B Neuropsychiatr Genet 168b(4):236–246

    Article  PubMed  Google Scholar 

  • Liu Xiaoxi XTS, Takeshi Otowa Y-Y, Kawamura Y, Tochigi M, Iwata Y, Umekage T, Toyota T, Maekawa M, Iwayama Y, Suzuki K, Kakiuchi C, Kuwabara H, Kano Y, Nishida H, Sugiyama T, Kato N, Chen C-H, Gau S (2015b) Genome-wide association study of autism spectrum disorder in the East Asian Populations. Autism Res 9:340–349

    PubMed  Google Scholar 

  • LoParo D, Waldman ID (2015) The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: a meta-analysis. Mol Psychiatry 20(5):640–646

    Article  CAS  PubMed  Google Scholar 

  • Main PA, Angley MT, Thomas P, O’Doherty CE, Fenech M (2010) Folate and methionine metabolism in autism: a systematic review. Am J Clin Nutr 91(6):1598–1620

    Article  CAS  PubMed  Google Scholar 

  • Main PA, Angley MT, O’Doherty CE, Thomas P, Fenech M (2012) The potential role of the antioxidant and detoxification properties of glutathione in autism spectrum disorders: a systematic review and meta-analysis. Nutr Metab 9:35–35

    Article  CAS  Google Scholar 

  • Mansfield P, Constantino JN, Baldridge D (2020) Myt1l: a systematic review of genetic variation encompassing schizophrenia and autism. Am J Med Genet Part B: Neuropsychiatr Genet 183(4):227–233

  • Mazahery H, Camargo CA Jr, Conlon C, Beck KL, Kruger MC, von Hurst PR (2016) Vitamin D and autism spectrum disorder: a literature review. Nutrients 8(4):236–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Murdoch JD, Speed WC, Pakstis AJ, Heffelfinger CE, Kidd KK (2013) Worldwide population variation and haplotype analysis at the serotonin transporter gene SLC6A4 and implications for association studies. Biol Psychiatry 74(12):879–889

    Article  CAS  PubMed  Google Scholar 

  • Murphy P, Hill RE (1991) Expression of the mouse labial-like homeobox-containing genes, Hox 2.9 and Hox 1.6, during segmentation of the hindbrain. Development 111(1):61–74

    Article  CAS  PubMed  Google Scholar 

  • Noroozi R, Taheri M, Ghafouri-Fard S, Bidel Z, Omrani MD, Moghaddam AS, Sarabi P, Jarahi AM (2018) Meta-analysis of GABRB3 gene polymorphisms and susceptibility to autism spectrum disorder. J Mol Neurosci 65(4):432–437

    Article  CAS  PubMed  Google Scholar 

  • Nuñez-Rios DL, Chaskel R, Lopez A, Galeano L, Lattig MC (2020) The role of 5-HTTLPR in autism spectrum disorder: New evidence and a meta-analysis of this polymorphism in Latin American population with psychiatric disorders. PLoS ONE 15(7):e0235512

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S et al (2011) Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43(6):585–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP et al (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485(7397):246–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palferman SMN, Turner M, Moore J, Cons IMGSA (2001) A genomewide screen for autism: strong evidence for linkage to chromosomes 2q, 7q, and 16p. Am J Hum Genet 69(3):570–581

    Article  Google Scholar 

  • Pan Y, Chen J, Guo H, Ou J, Peng Y, Liu Q et al (2015) Association of genetic variants of GRIN2B with autism. Sci Rep 5:8296–8296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasca SP, Dronca E, Kaucsar T, Craciun EC, Endreffy E, Ferencz BK et al (2009) One carbon metabolism disturbances and the C677T MTHFR gene polymorphism in children with autism spectrum disorders. J Cell Mol Med 13(10):4229–4238

    Article  CAS  PubMed  Google Scholar 

  • Poot M, van der Smagt JJ, Brilstra EH, Bourgeron T (2011) Disentangling the myriad genomics of complex disorders, specifically focusing on autism, epilepsy, and schizophrenia. Cytogenet Genome Res 135(3–4):228–240

    Article  CAS  PubMed  Google Scholar 

  • Pu D, Shen Y, Wu J (2013) Association between MTHFR gene polymorphisms and the risk of autism spectrum disorders: a meta-analysis. Autism Res 6(5):384–392

    Article  PubMed  Google Scholar 

  • Rai V (2016) Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility. Metab Brain Dis 31(4):727–735

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS et al (1993) Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci USA 90(6):2542–2546

    Article  CAS  PubMed  Google Scholar 

  • Sadeghiyeh T, Dastgheib SA, Mirzaee-Khoramabadi K, Morovati-Sharifabad M, Akbarian-Bafghi MJ, Poursharif Z et al (2019) Association of MTHFR 677C>T and 1298A>C polymorphisms with susceptibility to autism: a systematic review and meta-analysis. Asian J Psychiatr 46:54–61

    Article  PubMed  Google Scholar 

  • Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ et al (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485(7397):237–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A (2014) The familial risk of Autism. JAMA 311(17):1770–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senkov O, Andjus P, Radenovic L, Soriano E, Dityatev A (2014) Neural ECM molecules in synaptic plasticity, learning, and memory. Prog Brain Res 214:53–80

    Article  PubMed  Google Scholar 

  • Shaik Mohammad N, Sai Shruti P, Bharathi V, Krishna Prasad C, Hussain T, Alrokayan SA et al (2016) Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders. Psychiatr Genet 26(6):281–286

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Kim E (2000) The Shank family of scaffold proteins. J Cell Sci 113(Pt 11):1851–1856

    Article  CAS  PubMed  Google Scholar 

  • Soler J, Fañanás L, Parellada M, Krebs MO, Rouleau GA, Fatjó-Vilas M (2018) Genetic variability in scaffolding proteins and risk for schizophrenia and autism-spectrum disorders: a systematic review. J Psychiatry Neurosci 43(4):170066

    Article  PubMed  Google Scholar 

  • Song RR, Zou L, Zhong R, Zheng XW, Zhu BB, Chen W et al (2011) An integrated meta-analysis of two variants in HOXA1/HOXB1 and their effect on the risk of autism spectrum disorders. PLoS ONE 6(9):e25603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Südhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455(7215):903–911

    Article  PubMed  PubMed Central  Google Scholar 

  • Suh JH, Walsh WJ, McGinnis WR, Lewis A, Ames BN (2008) altered sulfur amino acid metabolism in immune cells of children diagnosed with autism. Am J Biochem Biotechnol 4(2):105–113

    Article  CAS  Google Scholar 

  • Sun H, Yang Y, Zhang L, Wu H, Zhang H, Li H (2019) Analysis of the SNP rs3747333 and rs3747334 in NLGN4X gene in autism spectrum disorder: a meta-analysis. Ann Gen Psychiatry 18(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  • Tick B, Bolton P, Happé F, Rutter M, Rijsdijk F (2016) Heritability of autism spectrum disorders: a meta-analysis of twin studies. J Child Psychol Psychiatry 57(5):585–595

    Article  PubMed  Google Scholar 

  • Torrico B, Fernàndez-Castillo N, Hervás A, Milà M, Salgado M, Rueda I et al (2015) Contribution of common and rare variants of the PTCHD1 gene to autism spectrum disorders and intellectual disability. Eur J Hum Genet 23(12):1694–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu MC, Huang CW, Chen NC, Chang WN, Lui CC, Chen CF, Chen C, Wang YL, Lin YT, Chang CC (2010) Hyperhomocysteinemia in Alzheimer dementia patients and cognitive decline after 6 months follow-up period. Acta Neurol Taiwan 19:168–177

    PubMed  Google Scholar 

  • Veenstra-Vanderweele J, Christian SL, Cook EH Jr (2004) Autism as a paradigmatic complex genetic disorder. Annu Rev Genom Hum Genet 5:379–405

    Article  CAS  Google Scholar 

  • Vojinovic D, Brison N, Ahmad S, Noens I, Pappa I, Karssen LC (2017) Variants in TTC25 affect autistic trait in patients with autism spectrum disorder and general population. Eur J Human Genet 25(8):982–987

    Article  CAS  Google Scholar 

  • Walsh KM, Bracken MB (2011) Copy number variation in the dosage-sensitive 16p11.2 interval accounts for only a small proportion of autism incidence: a systematic review and meta-analysis. Genet Med 13(5):377–384

    Article  PubMed  Google Scholar 

  • Waltes R, Duketis E, Knapp M, Anney RJ, Huguet G, Schlitt S et al (2014) Common variants in genes of the postsynaptic FMRP signalling pathway are risk factors for autism spectrum disorders. Hum Genet 133(6):781–792

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Hong Y, Zou L, Zhong R, Zhu B, Shen N et al (2014) Reelin gene variants and risk of autism spectrum disorders: an integrated meta-analysis. Am J Med Genet B Neuropsychiatr Genet 165b(2):192–205

    Article  PubMed  Google Scholar 

  • Warrier V, Chee V, Smith P, Chakrabarti B, Baron-Cohen S (2015) A comprehensive meta-analysis of common genetic variants in autism spectrum conditions. Mol Autism 6:49–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiss LA, Arking DE, Daly MJ, Chakravarti A (2009) A genome-wide linkage and association scan reveals novel loci for autism. Nature 461(7265):802–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werling AM, Bobrowski E, Taurines R, Gundelfinger R, Romanos M, Grünblatt E et al (2016) CNTNAP2 gene in high functioning autism: no association according to family and meta-analysis approaches. J Neural Transm (vienna) 123(3):353–363

    Article  CAS  Google Scholar 

  • Xia K, Guo H, Hu Z, Xun G, Zuo L, Peng Y et al (2014) Common genetic variants on 1p13.2 associate with risk of autism. Mol Psychiatry 19(11):1212–1219

    Article  CAS  PubMed  Google Scholar 

  • Yang P-Y, Menga Y-J, Li T, Huang Y (2017) Associations of endocrine stress-related gene polymorphisms with risk of autism spectrum disorders: evidence from an integrated meta-analysis. Autism Res 10(11):1722–1736

    Article  PubMed  Google Scholar 

  • Yanqing Z (2018) Association of IMMP2L deletions with autism spectrum disorder: A trio family study and meta-analysis. Am J Med Genet Part B Neuropsychiatr Genet 1(177):93–100

    Google Scholar 

  • Zhang T, Zhang J, Wang Z, Jia M, Lu T, Wang H et al (2019) Association between CNTNAP2 polymorphisms and autism: a family-based study in the chinese han population and a meta-analysis combined with GWAS data of psychiatric genomics consortium. Autism Res 12(4):553–561

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The study was funded by the National Natural Science Foundation of China (No. 81973064), the Natural Science Fund of Education Department of Anhui province (No.KJ2017A184), and the Grants for Scientific Research of BSKY from Anhui Medical University (No. XJ201701). The authors stated that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Zhu, Y., Wang, T. et al. Genetic risk factors for autism-spectrum disorders: a systematic review based on systematic reviews and meta-analysis. J Neural Transm 128, 717–734 (2021). https://doi.org/10.1007/s00702-021-02360-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-021-02360-w

Keywords

Navigation