Skip to main content

Advertisement

Log in

Autophagy in trimethyltin-induced neurodegeneration

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Autophagy is a degradative process playing an important role in removing misfolded or aggregated proteins, clearing damaged organelles, such as mitochondria and endoplasmic reticulum, as well as eliminating intracellular pathogens. The autophagic process is important for balancing sources of energy at critical developmental stages and in response to nutrient stress. Recently, autophagy has been involved in the pathophysiology of neurodegenerative diseases although its beneficial (pro-survival) or detrimental (pro-death) role remains controversial. In the present review, we discuss the role of autophagy following intoxication with trimethyltin (TMT), an organotin compound that induces severe hippocampal neurodegeneration associated with astrocyte and microglia activation. TMT is considered a useful tool to study the molecular mechanisms occurring in human neurodegenerative diseases such as Alzheimer’s disease and temporal lobe epilepsy. This is also relevant in the field of environmental safety, since organotin compounds are used as heat stabilizers in polyvinyl chloride polymers, industrial and agricultural biocides, and as industrial chemical catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(from Fabrizi et al. 2012)

Fig. 3

Similar content being viewed by others

References

  • Al-Malack MH, Sheikheldin SY (2001) Effect of solar radiation on the migration of vinyl chloride monomer from unplasticized PVC pipes. Water Res 35:3283–3290

    Article  CAS  PubMed  Google Scholar 

  • Balaban CD, O’Callaghan JP, Billingsley ML (1988) Trimethyltin-induced neuronal damage in the rat brain: comparative studies using silver degeneration stains, immunocytochemistry and immunoassay for neuronotypic and gliotypic proteins. Neuroscience 26:337–361

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM (2008) The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol 28:5747–5763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett R (1996) Industrial manufacture and applications of tributyltin compounds. In: De Mora SJ (ed) Tributyltin: a case study of an environmental contaminant. Cambridge University Press, Cambridge, pp 21–61

    Chapter  Google Scholar 

  • Berg TO, Fengsrud M, Stromhaug PE, Berg T, Seglen PO (1998) Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem 273:21883–21892

    Article  CAS  PubMed  Google Scholar 

  • Besser R, Krämer G, Thümler R, Bohl J, Gutmann L, Hopf HC (1987) Acute trimethyltin limbic-cerebellar syndrome. Neurology 37:945–950

    Article  CAS  PubMed  Google Scholar 

  • Blakeslee WW, Lin YH, Stratton MS, Tatman PD, Hu T, Ferguson BS, McKinsey TA (2017) Class I HDACs control a JIP1-dependent pathway for kinesin-microtubule binding in cardiomyocytes. J Mol Cell Cardiol 112:74–82. https://doi.org/10.1016/j.yjmcc.2017.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouldin TW, Goines ND, Bagnell RC, Krigman MR (1981) Pathogenesis of trimethyltin neuronal toxicity. Ultrastructural and cytochemical observations. Am J Pathol 104:237–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caito S, Aschner M (2015) Neurotoxicity of metals. Handb Clin Neurol 131:169–189. https://doi.org/10.1016/B978-0-444-62627-1.00011-1

    Article  PubMed  Google Scholar 

  • Cao D, Jiang G, Zhou Q, Yang R (2009) Organotin pollution in China: an overview of the current state and potential health risk. J Environ Manag 90(Suppl. 1):S16–S24

    Article  CAS  Google Scholar 

  • Ceccariglia S, Alvino A, Del Fà A, Parolini O, Michetti F, Gangitano C (2019) Autophagy is activated in vivo during trimethyltin-induced apoptotic neurodegeneration: a study in the rat hippocampus. Int J Mol Sci. https://doi.org/10.3390/ijms21010175

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang LW, Dyer RS (1985) Septotemporal gradients of trimethyltin-induced hippocampal lesions. Neurobehav Toxicol Teratol 7:43–49

    CAS  PubMed  Google Scholar 

  • Chang LW, Wenger GR, McMillan DE, Dyer RS (1983) Species and strain comparison of acute neurotoxic effects of trimethyltin in mice and rats. Neurobehav Toxicol Teratol 5:337–350

    CAS  PubMed  Google Scholar 

  • Chen S, Atkins CM, Liu CL, Alonso OF, Dietrich WD, Hu BR (2007) Alterations in mammalian target of rapamycin signaling pathways after traumatic brain injury. J Cereb Blood Flow Metab 27:939–949

    Article  CAS  PubMed  Google Scholar 

  • Chiu CT, Wang Z, Hunsberger JG, Chuang DM (2013) Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 65:105–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciechanover A, Kwon YT (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 47:e147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corti O, Blomgren K, Poletti A, Beart PM (2020) Autophagy in neurodegeneration: new insights underpinning therapy for neurological diseases. J Neurochem 9:e15002. https://doi.org/10.1111/jnc.15002

    Article  CAS  Google Scholar 

  • Cuervo AM, Dice JF (1996) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273:501–503

    Article  CAS  PubMed  Google Scholar 

  • de Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F (1995) Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 60:604–617

    Article  Google Scholar 

  • Descloux C, Ginet V, Rummel C, Truttmann AC, Puyal J (2018) Enhanced autophagy contributes to excitotoxic lesions in a rat model of preterm brain injury. Cell Death Dis 9:853

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dixit AB, Banerjee J, Srivastava A, Tripathi M, Sarkar C, Kakkar A, Jain M, Chandra PS (2016) RNA-seq analysis of hippocampal tissues reveals novel candidate genes for drug refractory epilepsy in patients with MTLE-HS. Genomics 107:178–188. https://doi.org/10.1016/j.ygeno.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  • Dyer RS, Walsh TJ, Wonderlin WF, Bercegeay M (1982) The trimethyltin syndrome in rats. Neurobehav Toxicol Teratol 4:127–133

    CAS  PubMed  Google Scholar 

  • Fabrizi C, Somma F, Pompili E, Biagioni F, Lenzi P, Fornai F, Fumagalli L (2012) Role of autophagy inhibitors and inducers in modulating the toxicity of trimethyltin in neuronal cell cultures. J Neural Transm 119:1295–1305

    Article  CAS  PubMed  Google Scholar 

  • Fabrizi C, De Vito S, Somma F, Pompili E, Catizone A, Leone S, Lenzi P, Fornai F, Fumagalli L (2014) Lithium improves survival of PC12 pheochromocytoma cells in high-density cultures and after exposure to toxic compounds. Int J Cell Biol 2014:135908. https://doi.org/10.1155/2014/135908(Epub 2014 Jan 20)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabrizi C, Pompili E, De Vito S, Somma F, Catizone A, Ricci G, Lenzi P, Fornai F, Fumagalli L (2016) Impairment of the autophagic flux in astrocytes intoxicated by trimethyltin. NeuroToxicology 52:12–22

    Article  CAS  PubMed  Google Scholar 

  • Fabrizi C, Pompili E, Somma F, De Vito S, Ciraci V, Artico M, Lenzi P, Fornai F, Fumagalli L (2017) Lithium limits trimethyltin-induced cytotoxicity and proinflammatory response in microglia without affecting the concurrent autophagy impairment. J Appl Toxicol 37:207–213. https://doi.org/10.1002/jat.3344(Epub 2016 May 25)

    Article  CAS  PubMed  Google Scholar 

  • Feldman RG, White RF, Ikechukwu EI (1993) Trimethyltin encephalopathy. Arch Neurol 50:1320–1324

    Article  CAS  PubMed  Google Scholar 

  • Fent K (1996) Ecotoxicology of organotin compounds. Crit Rev Toxicol 26:1–117

    Article  CAS  PubMed  Google Scholar 

  • Ferraz da Silva I, Freitas-Lima LC, Graceli JB, Rodrigues LCM (2018) Organotins in neuronal damage, brain function, and behavior: a short review. Front Endocrinol (Lausanne) 8:366. https://doi.org/10.3389/fendo.2017.00366(eCollection 2017. Review)

    Article  Google Scholar 

  • Ferrucci M, Biagioni F, Ryskalin L, Limanaqi F, Gambardella S, Frati A, Fornai F (2018) Ambiguous effects of autophagy activation following hypoperfusion/ischemia. Int J Mol Sci. https://doi.org/10.3390/ijms19092756(Review)

    Article  PubMed  PubMed Central  Google Scholar 

  • Fortemps E, Amand G, Bomboir A, Lauwerys R, Laterre EC (1978) Trimethyltin poisoning. Report of two cases. Int Arch Occup Environ Health 41:1–6

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara Y, Wada K, Kabuta T (2017) Lysosomal degradation of intracellular nucleic acids-multiple autophagic pathways. J Biochem 161:145–154

    CAS  PubMed  Google Scholar 

  • Furuhashi K, Ogawa M, Suzuki Y, Endo Y, Kim Y, Ichihara G (2008) Methylation of dimethyltin in mice and rats. Chem Res Toxicol 21:467–471. https://doi.org/10.1021/tx700320a(Epub 2007 Dec 29)

    Article  CAS  PubMed  Google Scholar 

  • Gabryel B, Kost A, Kasprowska D (2012) Neuronal autophagy in cerebral ischemia—a potential target for neuroprotective strategies? Pharmacol Rep 64:1–15

    Article  CAS  PubMed  Google Scholar 

  • Ge W, Jakobsson E (2018) Systems biology understanding of the effects of lithium on affective and neurodegenerative disorders. Front Neurosci 12:933. https://doi.org/10.3389/fnins.2018.00933(eCollection 2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Ginet V, Spiehlmann A, Rummel C, Rudinskiy N, Grishchuk Y, Luthi-Carter R, Clarke PGH, Truttmann AC, Puyal J (2014) Involvement of autophagy in hypoxic excitotoxic neuronal death. Autophagy 10:846–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez FD, Apodaca P, Holloway LN, Pannell KH, Whalen MM (2007) Effect of a series of triorganotins on the immune function of human natural killer cells. Environ Toxicol Pharmacol 23:18–24

    Article  CAS  PubMed  Google Scholar 

  • Haga S, Haga C, Aizawa T, Ikeda K (2002) Neuronal degeneration and glial cell-responses following trimethyltin intoxication in the rat. Acta Neuropathol 103:575–582

    Article  CAS  PubMed  Google Scholar 

  • Hamasaki T, Nagase H, Yoshioka Y, Sato T (1995) Formation, distribution, and ecotoxicity of methylmetals of tin, mercury, and arsenic in the environment. Crit Rev Environ Sci Technol 25:45–91

    Article  CAS  Google Scholar 

  • Harada K, Kotani T, Kirisako H, Sakoh-Nakatogawa M, Oikawa Y, Kimura Y, Hirano H, Yamamoto H, Ohsumi Y, Nakatogawa H (2019) Two distinct mechanisms target the autophagy-related E3 complex to the pre-autophagosomal structure. eLife. https://doi.org/10.7554/elife.43088

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11:1433–1437

    Article  CAS  PubMed  Google Scholar 

  • Hoch M (2001) Organotin compounds in the environment—an overview. Appl Geochem 16:719–743

    Article  CAS  Google Scholar 

  • Hochfeld WE, Lee S, Rubinsztein DC (2013) Therapeutic induction of autophagy to modulate neurodegenerative disease progression. Acta Pharmacol Sin 34:600–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan J-L, Oshiro N, Mizushima N (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang WC, Lin YS, Wang CY, Tsai CC, Tseng HC, Chen CL, Lu PJ, Chen PS, Qian L, Hong JS, Lin CF (2009) Glycogen synthase kinase-3 negatively regulates anti-inflammatory interleukin-10 for lipopolysaccharide-induced iNOS/NO biosynthesis and RANTES production in microglial cells. Immunology 128:e275–e286

    Article  PubMed  PubMed Central  Google Scholar 

  • Ichihara G, Iida M, Watanabe E, Fujie T, Kaji T, Lee E, Kim Y (2019) Urinary trimethyl tin reflects blood trimethyl tin in workers recycling organotins. J Occup Health 61:257–260. https://doi.org/10.1002/1348-9585.12052(Epub 2019 Mar 28)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikura N, Tsunashima K, Watanabe KI, Nishimura T, Shirayama Y, Kato N (2001) Temporal change of hippocampal enkephalin and dynorphin mRNA following trimethyltin intoxication in rats: effect of anticonvulsant. Neurosci Lett 306:157–160

    Article  CAS  PubMed  Google Scholar 

  • Jensen KG, Onfelt A, Wallin M, Lidums V, Andersen O (1991) Effects of organotin compounds on mitosis, spindle structure, toxicity and in vitro microtubule assembly. Mutagenesis 6:409–416

    Article  CAS  PubMed  Google Scholar 

  • Jiang GB, Zhou QF (2000) Direct Grignard pentylation of organotin-contaminated lard samples followed by capillary gas chromatography with flame photometric detection. J Chromatogr A 886:197–205

    Article  CAS  PubMed  Google Scholar 

  • Johnson GA, Calabrese E, Little PB, Hedlund L, Qi Y, Badea A (2014) Quantitative mapping of trimethyltin injury in the rat brain using magnetic resonance histology. NeuroToxicology 42:12–23. https://doi.org/10.1016/j.neuro.2014.02.009(Epub 2014 Mar 11)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jope RS (2003) Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci 24:441–443 (Review)

    Article  CAS  PubMed  Google Scholar 

  • Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20:1992–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr F, Bjedov I, Sofola-Adesakin O (2018) Molecular mechanisms of lithium action: switching the light on multiple targets for dementia using animal models. Front Mol Neurosci 11:297

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim J, Yang M, Kim SH, Kim JC, Wang H, Shin T, Moon C (2013) Possible role of the glycogen synthase kinase-3 signaling pathway in trimethyltin-induced hippocampal neurodegeneration in mice. PLoS ONE 8:e70356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34:259–269

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ (2008) Autophagy revisited: a conversation with Christian de Duve. Autophagy 4:740–743

    Article  PubMed  Google Scholar 

  • Klionsky DJ, Emr S (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, Kawahara N, Kuida K, Nagata S, Kominami E, Tanaka K, Uchiyama Y (2008) Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 172:454–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreyberg S, Torvik A, Bjørneboe A, Wiik-Larsen W, Jacobsen D (1992) Trimethyltin poisoning: report of a case with postmortem examination. Clin Neuropathol 11:256–259

    CAS  PubMed  Google Scholar 

  • Lamark T, Kirkin V, Dikic I, Johansen T (2009) NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8:1986–1990

    Article  CAS  PubMed  Google Scholar 

  • Lattanzi W, Bernardini C, Gangitano C, Michetti F (2007) Hypoxia-like transcriptional activation in TMT-induced degeneration: microarray expression analysis on PC12 cells. J Neurochem 100:1688–1702

    CAS  PubMed  Google Scholar 

  • Lattanzi W, Corvino V, Di Maria V, Michetti F, Geloso MC (2013) Gene expression profiling as a tool to investigate the molecular machinery activated during hippocampal neurodegeneration induced by trimethyltin (TMT) administration. Int J Mol Sci 14:16817–16835. https://doi.org/10.3390/ijms140816817(Review)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau A, Zheng Y, Tao S, Wang H, Whitman SA, White E, Zhang DD (2013) Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner. Mol Cell Biol 33:2436–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Yu WH, Kumar A, Lee S, Mohan PS, Peterho CM, Wolfe DM, Martinez-Vicente M, Massey AC, Uchiyama Y, Westaway D, Cuervo AM, Nixon RA (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by alzheimer-related PSI mutations. Cell 141:1146–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Yang M, Kim J, Kim J, Son Y, Kwon S, Kim SH, Kim JC, Kang SS, Wang H, Shin T, Moon C (2014) Nestin expression and glial response in the hippocampus of mice after trimethyltin treatment. Acta Histochem 116(8):1276–1288. https://doi.org/10.1016/j.acthis.2014.07.009(Epub 2014 Aug 16)

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Yang M, Kim J, Kang S, Kim J, Kim JC, Jung C, Shin T, Kim SH, Moon C (2016) Trimethyltin-induced hippocampal neurodegeneration: a mechanism-based review. Brain Res Bull 125:187–199

    Article  CAS  PubMed  Google Scholar 

  • Lenzi P, Lazzeri G, Biagioni F, Busceti CL, Gambardella S, Salvetti A, Fornai F (2016) The autophagoproteasome a novel cell clearing organelle in baseline and stimulated conditions. Front Neuroanat 10:78. https://doi.org/10.3389/fnana.2016.00078(eCollection 2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Han Y, Du J, Jin H, Zhang J, Niu M, Qin J (2018) Alterations of apoptosis and autophagy in developing brain of rats with epilepsy: changes in LC3, P62, Beclin-l and Bcl2 levels. Neurosci Res 130:47–55

    Article  CAS  PubMed  Google Scholar 

  • Little AR, Benkovic SA, Miller DB, O’Callaghan JP (2002) Chemically induced neuronal damage and gliosis: enhanced expression of the proinflammatory chemokine, monocyte chemoattractant protein (MCP)-1, without a corresponding increase in proinflammatory cytokines(1). Neuroscience 115:307–320

    Article  CAS  PubMed  Google Scholar 

  • Liu CL, Chen S, Dietrich D, Hu BR (2008) Changes in autophagy after traumatic brain injury. J Cereb Blood Flow Metab 28:674–683

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Dai C, Fan Y, Guo B, Ren K, Sun T, Wang W (2017) From autophagy to mitophagy: the roles of P62 in neurodegenerative diseases. J Bioenerg Biomembr 49:413–422. https://doi.org/10.1007/s10863-017-9727-7(Epub 2017 Oct 3)

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Pi H, Xi Y, Wang L, Tian L, Chen M, Xie J, Deng P, Zhang T, Zhou C, Liang Y, Zhang L, He M, Lu Y, Chen C, Yu Z, Zhou Z (2020) KIF5A-dependent axonal transport deficiency disrupts autophagic flux in trimethyltin chloride-induced neurotoxicity. Autophagy. https://doi.org/10.1080/15548627.2020.1739444

    Article  PubMed  Google Scholar 

  • Martin M, Rehani K, Jope RS, Michalek SM (2005) Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 6:777–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mijaljica D, Prescott M, Devenish RJ (2011) Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7:673–682

    Article  CAS  PubMed  Google Scholar 

  • Misiti F, Orsini F, Clementi ME, Lattanzi W, Giardina B, Michetti F (2008) Mitochondrial oxygen consumption inhibition importance for TMT dependent cell death in undifferentiated PC12 cells. Neurochem Int 52:1092–1099

    Article  CAS  PubMed  Google Scholar 

  • Morfini G, Schmidt N, Weissmann C, Pigino G, Kins S (2016) Conventional kinesin: biochemical heterogeneity and functional implications in health and disease. Brain Res Bull 126:347–353

    Article  CAS  PubMed  Google Scholar 

  • Mushak P, Krigman MR, Mailman RB (1982) Comparative organotin toxicity in the developing rat: somatic and morphological changes and relationship to accumulation of total tin. Neurobehav Toxicol Teratol 4:209–215

    CAS  PubMed  Google Scholar 

  • Nakajima K, Yin X, Takei Y, Seog DH, Homma N, Hirokawa N (2012) Molecular motor KIF5A is essential for GABA(A) receptor transport, and KIF5A deletion causes epilepsy. Neuron 76:945–961. https://doi.org/10.1016/j.neuron.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  • Noda NN, Inagaki F (2015) Mechanisms of Autophagy. Annu Rev Biophys 44:101–122. https://doi.org/10.1146/annurev-biophys-060414-034248(Epub 2015 Feb 26. Review)

    Article  CAS  PubMed  Google Scholar 

  • Oku M, Sakai Y (2018) Three distinct types of microautophagy based on membrane dynamics and molecular machineries. BioEssays 40:e1800008. https://doi.org/10.1002/bies.201800008

    Article  PubMed  Google Scholar 

  • Orenstein SJ, Cuervo AM (2010) Chaperone-mediated autophagy: molecular mechanisms and physiological relevance. Semin Cell Dev Biol 21:719–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HJ, Shim HS, Choi WK, Kim KS, Bae H, Shim I (2011a) Neuroprotective effect of Lucium chinense fruit on trimethyltin-induced learning and memory deficits in the rats. Exp Neurobiol 20:137–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Park SH, Park-Min KH, Chen J, Hu X, Ivashkiv LB (2011b) Tumor necrosis factor induces GSK3 kinase-mediated cross-tolerance to endotoxin in macrophages. Nat Immunol 12:607–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20:460–473. https://doi.org/10.1089/ars.2013.5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquali L, Busceti CL, Fulceri F, Paparelli A, Fornai F (2010) Intracellular pathways underlying the effects of lithium. Behav Pharmacol 21:473–492. https://doi.org/10.1097/FBP.0b013e32833da5da

    Article  CAS  PubMed  Google Scholar 

  • Perretta G, Righi FR, Gozzo S (1993) Neuropathological and behavioral toxicology of trimethyltin exposure. Ann Ist Super Sanita 29:167–174

    CAS  PubMed  Google Scholar 

  • Piver WT (1973) Organotin compounds: industrial applications and biological investigation. Environ Health Perspect 4:61–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pompili E, Nori SL, Geloso MC, Guadagni E, Corvino V, Michetti F, Fumagalli L (2004) Trimethyltin-induced differential expression of PAR subtypes in reactive astrocytes of the rat hippocampus. Brain Res Mol Brain Res 122:93–98

    Article  CAS  PubMed  Google Scholar 

  • Pompili E, Fabrizi C, Fumagalli L (2006) PAR-1 upregulation by trimethyltin and lipopolysaccharide in cultured rat astrocytes. Int J Mol Med 18:33–39

    CAS  PubMed  Google Scholar 

  • Pompili E, Fabrizi C, Nori SL, Panetta B, Geloso MC, Corvino V, Michetti F, Fumagalli L (2011) Protease-activated receptor-1 expression in rat microglia after trimethyltin treatment. J Histochem Cytochem 59:302–311. https://doi.org/10.1369/0022155410397996(Epub 2011 Jan 12)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pompili E, Fabrizi C, Fornai F, Fumagalli L (2019) Role of the protease-activated receptor 1 in regulating the function of glial cells within central and peripheral nervous system. J Neural Transm (Vienna) 126:1259–1271. https://doi.org/10.1007/s00702-019-02075-z(Epub 2019 Sep 6. Review)

    Article  CAS  Google Scholar 

  • Richardson R, Edwards MA (2009) Vinyl chloride and organotin stabilizers in water contacting new and aged PVC pipe, final report #2991. Water Research, Denver

  • Rodionova E, Conzelmann M, Maraskovsky E, Hess M, Kirsch M, Giese T, Ho AD, Zöller M, Dreger P, Luft T (2007) GSK-3 mediates differentiation and activation of proinflammatory dendritic cells. Blood 109:1584–1592

    Article  CAS  PubMed  Google Scholar 

  • Ruffoli R, Bartalucci A, Frati A, Fornai F (2015) Ultrastructural studies of ALS mitochondria connect altered function and permeability with defects of mitophagy and mitochondriogenesis. Front Cell Neurosci 9:341

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rydzanicz M, Jagla M, Kosinska J, Tomasik T, Sobczak A, Pollak A, Herman-Sucharska I, Walczak A, Kwinta P, Płoski R (2017) KIF5A de novo mutation associated with myoclonic seizures and neonatal onset progressive leukoencephalopathy. Clin Genet 91:769–773. https://doi.org/10.1111/cge.12831

    Article  CAS  PubMed  Google Scholar 

  • Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A, Potolicchio I, Nieves E, Cuervo AM, Santambrogio L (2011) Microautophagy of cytosolic proteins by late endosomes. Dev Cell 20:131–139. https://doi.org/10.1016/j.devcel.2010.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampath R, Venkatakrishnan H, Ravichandran V, Chaudhury RR (2012) Biochemistry of TBT-degrading marine pseudomonads isolated from Indian coastal waters. Water Air Soil Pollut 223:99–106

    Article  CAS  Google Scholar 

  • Sarkar S, Rubinsztein DC (2006) Inositol and IP3 levels regulate autophagy: biology and therapeutic speculations. Autophagy 2:132–134 (Epub 2006 Apr 6. Review)

    Article  CAS  PubMed  Google Scholar 

  • Son YO, Pratheeshkumar P, Roy RV, Hitron JA, Wang L, Zhang Z, Shi X (2014) Nrf2/p62 signaling in apoptosis resistance and its role in cadmium-induced carcinogenesis. J Biol Chem 289:28660–28675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer B, Potkar R, Trejo M, Rockenstein E, Gindi R, Adame A, Wyss-coray T, Masliah E (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson’s and Lewy body disease. J Neurosci 29:13578–13588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamburella A, Micale V, Mazzola C, Salomone S, Drago F (2012) The selective norepinephrine reuptake inhibitor atomoxetine counteracts behavioral impairments in trimethyltin-intoxicated rats. Eur J Pharmacol 683:148–154

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Xia L, Chen J, Huang M, Lai G, Li S, Wu B, Wang J, Zhu G (2008) Clinical analysis on 76 cases from 13 poisoning accidents caused by trimethyltin chloride. Chin Occup Med 35:91–94

    CAS  Google Scholar 

  • Tang X, Yang X, Lai G, Guo J, Xia L, Wu B, Xie Y, Huang M, Chen J, Ruan X, Sui G, Ge Y, Zuo W, Zhao N, Zhu G, Zhang J, Li L, Zhou W (2010) Mechanism underlying hypokalemia induced by trimethyltin chloride: inhibition of H+/K+-ATPase in renal intercalated cells. Toxicology 271:45–50

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Li N, Kang L, Dubois AM, Gong Z, Wu B, Lai G, Yang A, Ruan X, Gao H, Zhu G, Ge Y, Zhang J, Lin Z, Olson JR, Ren X (2013) Chronic low level trimethyltin exposure and the risk of developing nephrolithiasis. Occup Environ Med 70:561–567

    Article  CAS  PubMed  Google Scholar 

  • Thompson TA, Lewis JM, Dejneka NS, Severs WB, Polavarapu R, Billingsley ML (1996) Induction of apoptosis by organotin compounds in vitro: neuronal protection with antisense oligonucleotides directed against stannin. J Pharmacol Exp Ther 276:1201–1216

    CAS  PubMed  Google Scholar 

  • Tooze J, Hollinshead M, Ludwig T, Howell K, Hoflack B, Kern H (1990) In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J Cell Biol 111:329–345

    Article  CAS  PubMed  Google Scholar 

  • Trabucco A, Di Pietro P, Nori SL, Fulceri F, Fumagalli L, Paparelli A, Fornai F (2009) Methylated tin toxicity a reappraisal using rodents models. Arch Ital Biol 147:141–153 (Review)

    CAS  PubMed  Google Scholar 

  • Vidal RL, Matus S, Bargsted L, Hetz C (2014) Targeting autophagy in neurodegenerative diseases. Trends Pharmacol Sci 35:583–591

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wilson WA, Fujino MA, Roach PJ (2001) Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol Cell Biol 21:5742–5752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Li B, Wang C, Chen Y, Zuo Z (2008) The concentration-dependent induction of cell death by trimethyltin chloride in rat liver epithelial IAR20 cells. Toxicol In Vitro 22:1136–1142. https://doi.org/10.1016/j.tiv.2008.02.021(Epub 2008 Mar 18)

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Xiong L, Zu H (2017) Toxic leukoencephalopathy and hypokalemia due to exposure to trimethyltin. J Clin Neurol 13:298–299. https://doi.org/10.3988/jcn.2017.13.3.298(Epub 2017 Apr 6)

    Article  PubMed  PubMed Central  Google Scholar 

  • Webber JL, Tooze SA (2010) Coordinated regulation of autophagy by p38α MAPK through mAtg9 and p38IP. EMBO J 29:27–40

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Zou K (2018) Electromyography analysis in 13 patients with acute trimethyltin chloride poisoning. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 36:685–687. https://doi.org/10.3760/cma.j.issn.1001-9391.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL (2009) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5:1180–1185

    Article  PubMed  Google Scholar 

  • Yoneyama M, Shiba T, Hasebe S, Umeda K, Yamaguchi T, Ogita K (2014) Lithium promotes neuronal repair and ameliorates depression-like behavior following trimethyltin-induced neuronal loss in the dentate gyrus. PLoS ONE 9:e87953

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yoo CI, Kim Y, Jeong KS, Sim CS, Choy N, Kim J, Eum JB, Nakajima Y, Endo Y, Kim YJ (2007) A case of acute organotin poisoning. J Occup Health 49:305–310

    Article  PubMed  Google Scholar 

  • Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12:1542–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuskaitis CJ, Jope RS (2009) Glycogen synthase kinase-3 regulates microglial migration, inflammation, and inflammation-induced neurotoxicity. Cell Signal 21:264–273

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Cao R, Cai T, Aschner M, Zhao F, Yao T, Chen Y, Cao Z, Luo W, Chen J (2013) The role of autophagy dysregulation in manganese-induced dopaminergic neurodegeneration. Neurotox Res 24:478–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu HB, Ouyang GL, Lai YY, Zhong SQ (2019) Clinical analysis of sequelae of acute trimethyltin oxide poisoning. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 37:376–379. https://doi.org/10.3760/cma.j.issn.1001-9391.2019.05.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Sapienza University to CF (RM118164328DF7F2 and RM11916B88BF39BB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Pompili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pompili, E., Fabrizi, C., Fumagalli, L. et al. Autophagy in trimethyltin-induced neurodegeneration. J Neural Transm 127, 987–998 (2020). https://doi.org/10.1007/s00702-020-02210-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-020-02210-1

Keywords

Navigation