Skip to main content
Log in

The striatal cholinergic system in l-dopa-induced dyskinesias

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Cholinergic signaling plays a key role in regulating striatal function. The principal source of acetylcholine in the striatum is the cholinergic interneurons which, although low in number, densely arborize to modulate striatal neurotransmission. This modulation occurs via strategically positioned nicotinic and muscarinic acetylcholine receptors that influence striatal dopamine, GABA and other neurotransmitter release. Cholinergic interneurons integrate multiple striatal synaptic inputs and outputs to regulate motor activity under normal physiological conditions. Consequently, an imbalance between these systems is associated with basal ganglia disorders. Here, we provide an overview of how striatal cholinergic interneurons modulate striatal activity under normal and pathological conditions. Numerous studies show that nigrostriatal damage such as that occurs with Parkinson’s disease affects cholinergic receptor-mediated striatal activity. This altered cholinergic signaling is an important contributor to Parkinson’s disease as well as to the dyskinesias that develop with l-dopa therapy, the gold standard for treatment. Indeed, multiple preclinical studies show that cholinergic receptor drugs may be beneficial for the treatment of l-dopa-induced dyskinesias. In this review, we discuss the evidence indicating that therapeutic modulation of the cholinergic system, particularly targeting of nicotinic cholinergic receptors, may offer a novel approach to manage this debilitating side effect of dopamine replacement therapy for Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aceves Buendia JJ, Tiroshi L, Chiu WH, Goldberg JA (2017) Selective remodeling of glutamatergic transmission to striatal cholinergic interneurons after dopamine depletion. Eur J Neurosci. https://doi.org/10.1111/ejn.13715

    Article  PubMed  Google Scholar 

  • Ahlskog JE, Muenter MD (2001) Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 16:448–458

    Article  PubMed  CAS  Google Scholar 

  • Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73–120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alcacer C, Andreoli L, Sebastianutto I, Jakobsson J, Fieblinger T, Cenci MA (2017) Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson’s disease therapy. J Clin Invest 127:720–734

    Article  PubMed  PubMed Central  Google Scholar 

  • Aldrin-Kirk P, Heuer A, Rylander Ottosson D, Davidsson M, Mattsson B, Bjorklund T (2018) Chemogenetic modulation of cholinergic interneurons reveals their regulating role on the direct and indirect output pathways from the striatum. Neurobiol Dis 109:148–162

    Article  PubMed  CAS  Google Scholar 

  • Aosaki T, Kimura M, Graybiel AM (1995) Temporal and spatial characteristics of tonically active neurons of the primate’s striatum. J Neurophysiol 73:1234–1252

    Article  PubMed  CAS  Google Scholar 

  • Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdere P, Ko WK, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bezard E (2015) Pathophysiology of l-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol 132:96–168

    Article  PubMed  CAS  Google Scholar 

  • Bennett BD, Wilson CJ (1998) Synaptic regulation of action potential timing in neostriatal cholinergic interneurons. J Neurosci 18:8539–8549

    Article  PubMed  CAS  Google Scholar 

  • Bennett BD, Callaway JC, Wilson CJ (2000) Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J Neurosci 20:8493–8503

    Article  PubMed  CAS  Google Scholar 

  • Bernard V, Normand E, Bloch B (1992) Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12:3591–3600

    Article  PubMed  CAS  Google Scholar 

  • Bohnen NI, Albin RL (2011) The cholinergic system and Parkinson disease. Behav Brain Res 221:564–573

    Article  PubMed  CAS  Google Scholar 

  • Bolam JP, Wainer BH, Smith AD (1984) Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy. Neuroscience 12:711–718

    Article  PubMed  CAS  Google Scholar 

  • Bordia T, Grady SR, McIntosh JM, Quik M (2007) Nigrostriatal damage preferentially decreases a subpopulation of alpha6beta2* nAChRs in mouse, monkey, and Parkinson’s disease striatum. Mol Pharmacol 72:52–61

    Article  PubMed  CAS  Google Scholar 

  • Bordia T, Campos C, Huang L, Quik M (2008) Continuous and intermittent nicotine treatment reduces l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesias in a rat model of Parkinson’s disease. J Pharmacol Exp Ther 327:239–247

    Article  PubMed  CAS  Google Scholar 

  • Bordia T, Campos C, McIntosh JM, Quik M (2010) Nicotinic receptor-mediated reduction in l-DOPA-induced dyskinesias may occur via desensitization. J Pharmacol Exp Ther 333:929–938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bordia T, McIntosh JM, Quik M (2013) The nicotine-mediated decline in l-dopa-induced dyskinesias is associated with a decrease in striatal dopamine release. J Neurochem 125:291–302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bordia T, McGregor M, McIntosh JM, Drenan RM, Quik M (2015) Evidence for a role for alpha6(*) nAChRs in l-dopa-induced dyskinesias using Parkinsonian alpha6(*) nAChR gain-of-function mice. Neuroscience 295:187–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bordia T, Perez XA, Heiss J, Zhang D, Quik M (2016) Optogenetic activation of striatal cholinergic interneurons regulates l-dopa-induced dyskinesias. Neurobiol Dis 91:47–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brotchie J (2010) Antidyskinetic actions of amantadine in Parkinson’s disease: are benefits maintained in the long term? Expert Rev Neurother 10:871–873

    Article  PubMed  CAS  Google Scholar 

  • Cachope R, Mateo Y, Mathur BN, Irving J, Wang HL, Morales M, Lovinger DM, Cheer JF (2012) Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing. Cell Rep 2:33–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G (1998) Blockade of M2-like muscarinic receptors enhances long-term potentiation at corticostriatal synapses. Eur J Neurosci 10:3020–3023

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G (2000) Acetylcholine-mediated modulation of striatal function. Trends Neurosci 23:120–126

    Article  PubMed  CAS  Google Scholar 

  • Carrillo-Reid L, Tecuapetla F, Vautrelle N, Hernandez A, Vergara R, Galarraga E, Bargas J (2009) Muscarinic enhancement of persistent sodium current synchronizes striatal medium spiny neurons. J Neurophysiol 102:682–690

    Article  PubMed  CAS  Google Scholar 

  • Cenci MA (2014) Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front Neurol 5:242

    Article  PubMed  PubMed Central  Google Scholar 

  • Cenci MA, Konradi C (2010) Maladaptive striatal plasticity in l-DOPA-induced dyskinesia. Prog Brain Res 183C:209–233

    Article  CAS  Google Scholar 

  • Champtiaux N, Gotti C, Cordero-Erausquin M, David DJ, Przybylski C, Lena C, Clementi F, Moretti M, Rossi FM, Le Novere N, McIntosh JM, Gardier AM, Changeux JP (2003) Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci 23:7820–7829

    Article  PubMed  CAS  Google Scholar 

  • Contant C, Umbriaco D, Garcia S, Watkins KC, Descarries L (1996) Ultrastructural characterization of the acetylcholine innervation in adult rat neostriatum. Neuroscience 71:937–947

    Article  PubMed  CAS  Google Scholar 

  • Dajas-Bailador F, Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci 25:317–324

    Article  PubMed  CAS  Google Scholar 

  • Darmopil S, Martin AB, De Diego IR, Ares S, Moratalla R (2009) Genetic inactivation of dopamine D1 but not D2 receptors inhibits l-DOPA-induced dyskinesia and histone activation. Biol Psychiat 66:603–613

    Article  PubMed  CAS  Google Scholar 

  • Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, Mena-Segovia J (2014) A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 34:4509–4518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delfino M, Kalisch R, Czisch M, Larramendy C, Ricatti J, Taravini IR, Trenkwalder C, Murer MG, Auer DP, Gershanik OS (2007) Mapping the effects of three dopamine agonists with different dyskinetogenic potential and receptor selectivity using pharmacological functional magnetic resonance imaging. Neuropsychopharmacology 32:1911–1921

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo T, Gregoire L, Feuerbach D, Elbast W, Weiss M, Gomez-Mancilla B (2014) AQW051, a novel and selective nicotinic acetylcholine receptor alpha7 partial agonist, reduces l-Dopa-induced dyskinesias and extends the duration of l-Dopa effects in parkinsonian monkeys. Parkinsonism Relat Disord 20:1119–1123

    Article  PubMed  Google Scholar 

  • Ding J, Guzman JN, Tkatch T, Chen S, Goldberg JA, Ebert PJ, Levitt P, Wilson CJ, Hamm HE, Surmeier DJ (2006) RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat Neurosci 9:832–842

    Article  PubMed  CAS  Google Scholar 

  • Ding JB, Guzman JN, Peterson JD, Goldberg JA, Surmeier DJ (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67:294–307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding Y, Won L, Britt JP, Lim SA, McGehee DS, Kang UJ (2011) Enhanced striatal cholinergic neuronal activity mediates l-DOPA-induced dyskinesia in parkinsonian mice. Proc Natl Acad Sci USA 108:340–345

    Google Scholar 

  • Drenan RM, Grady SR, Steele AD, McKinney S, Patzlaff NE, McIntosh JM, Marks MJ, Miwa JM, Lester HA (2010) Cholinergic modulation of locomotion and striatal dopamine release is mediated by alpha6alpha4* nicotinic acetylcholine receptors. J Neurosci 30:9877–9889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duvoisin RC (1967) Cholinergic-anticholinergic antagonism in parkinsonism. Arch Neurol 17:124–136

    Article  PubMed  CAS  Google Scholar 

  • Engeln M, Bastide MF, Toulme E, Dehay B, Bourdenx M, Doudnikoff E, Li Q, Gross CE, Boue-Grabot E, Pisani A, Bezard E, Fernagut PO (2016) Selective inactivation of striatal FosB/DeltaFosB-expressing neurons alleviates l-DOPA-induced dyskinesia. Biol Psychiat 79:354–361

    Article  PubMed  CAS  Google Scholar 

  • Exley R, Cragg SJ (2008) Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. Br J Pharmacol 153(Suppl 1):S283–S297

    PubMed  CAS  Google Scholar 

  • Exley R, Clements MA, Hartung H, McIntosh JM, Franklin M, Bermudez I, Cragg SJ (2013) Striatal dopamine transmission is reduced after chronic nicotine with a decrease in alpha6-nicotinic receptor control in nucleus accumbens. Eur J Neurosci 38(7):3036–3643

    PubMed  Google Scholar 

  • Fino E, Glowinski J, Venance L (2007) Effects of acute dopamine depletion on the electrophysiological properties of striatal neurons. Neurosci Res 58:305–316

    Article  PubMed  CAS  Google Scholar 

  • Foster DJ, Gentry PR, Lizardi-Ortiz JE, Bridges TM, Wood MR, Niswender CM, Sulzer D, Lindsley CW, Xiang Z, Conn PJ (2014) M5 receptor activation produces opposing physiological outcomes in dopamine neurons depending on the receptor’s location. J Neurosci 34:3253–3262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foster DJ, Wilson JM, Remke DH, Mahmood MS, Uddin MJ, Wess J, Patel S, Marnett LJ, Niswender CM, Jones CK, Xiang Z, Lindsley CW, Rook JM, Conn PJ (2016) Antipsychotic-like effects of M4 positive allosteric modulators are mediated by CB2 receptor-dependent inhibition of dopamine release. Neuron 91:1244–1252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mather J, Burdette D, Cebers G, Posener J, Alexander R, Leventer S, Ye N, Poole M, Dunlop J, Fox SH, Ravenscroft P, Johnston TH, Hill MP and Brotchie JM (2014) Potential of AZD1446, a novel nicotinic agonist, for the treatment of l-DOPA-induced dyskinesia in Parkinson’s disease. Soc Neurosci Abstr 43:137.111/L131

  • Galarraga E, Hernandez-Lopez S, Reyes A, Miranda I, Bermudez-Rattoni F, Vilchis C, Bargas J (1999) Cholinergic modulation of neostriatal output: a functional antagonism between different types of muscarinic receptors. J Neurosci 19:3629–3638

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Montes JR, Boronat-Garcia A, Lopez-Colome AM, Bargas J, Guerra-Crespo M, Drucker-Colin R (2012) Is nicotine protective against Parkinson’s disease? An experimental analysis. CNS Neurol Disord: Drug Targets 11:897–906

    Article  CAS  Google Scholar 

  • Gold SJ, Hoang CV, Potts BW, Porras G, Pioli E, Kim KW, Nadjar A, Qin C, LaHoste GJ, Li Q, Bioulac BH, Waugh JL, Gurevich E, Neve RL, Bezard E (2007) RGS9-2 negatively modulates l-3,4-dihydroxyphenylalanine-induced dyskinesia in experimental Parkinson’s disease. J Neurosci 27:14338–14348

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JA, Wilson CJ (2005) Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons. J Neurosci 25:10230–10238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldberg JA, Teagarden MA, Foehring RC, Wilson CJ (2009) Nonequilibrium calcium dynamics regulate the autonomous firing pattern of rat striatal cholinergic interneurons. J Neurosci 29:8396–8407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldberg JA, Ding JB, Surmeier DJ (2012) Muscarinic modulation of striatal function and circuitry. Handb Exp Pharmacol (208):223–241

  • Grady S, Marks MJ, Wonnacott S, Collins AC (1992) Characterization of nicotinic receptor-mediated [3H]dopamine release from synaptosomes prepared from mouse striatum. J Neurochem 59:848–856

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254

    Article  PubMed  CAS  Google Scholar 

  • Gregorio ML, Wietzikoski EC, Ferro MM, Silveira JL, Vital MA, Da Cunha C (2009) Nicotine induces sensitization of turning behavior in 6-hydroxydopamine lesioned rats. Neurotox Res 15:359–366

    Article  PubMed  CAS  Google Scholar 

  • Grondin R, Goulet M, Morissette M, Bedard PJ, Di Paolo T (1999) Dopamine D1 receptor mRNA and receptor levels in the striatum of MPTP monkeys chronically treated with SKF-82958. Eur J Pharmacol 378:259–263

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Flores T, Hernandez-Gonzalez O, Perez-Ramirez MB, Lara-Gonzalez E, Arias-Garcia MA, Duhne M, Perez-Burgos A, Prieto GA, Figueroa A, Galarraga E, Bargas J (2015) Modulation of direct pathway striatal projection neurons by muscarinic M(4)-type receptors. Neuropharmacology 89:232–244

    Article  PubMed  CAS  Google Scholar 

  • Hersch SM, Gutekunst CA, Rees HD, Heilman CJ, Levey AI (1994) Distribution of m1–m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype-specific antibodies. J Neurosci 14:3351–3363

    Article  PubMed  CAS  Google Scholar 

  • Heumann R, Moratalla R, Herrero MT, Chakrabarty K, Drucker-Colin R, Garcia-Montes JR, Simola N, Morelli M (2014) Dyskinesia in Parkinson’s disease: mechanisms and current non-pharmacological interventions. J Neurochem 130:472–489

    Article  PubMed  CAS  Google Scholar 

  • Howe AR, Surmeier DJ (1995) Muscarinic receptors modulate N-, P-, and l-type Ca2+ currents in rat striatal neurons through parallel pathways. J Neurosci 15:458–469

    Article  PubMed  CAS  Google Scholar 

  • Huang LZ, Campos C, Ly J, Ivy Carroll F, Quik M (2011a) Nicotinic receptor agonists decrease l-dopa-induced dyskinesias most effectively in partially lesioned parkinsonian rats. Neuropharmacology 60:861–868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang LZ, Grady SR, Quik M (2011b) Nicotine reduces l-DOPA-induced dyskinesias by acting at beta2* nicotinic receptors. J Pharmacol Exp Ther 338:932–941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM (2013) The pharmacology of l-DOPA-induced dyskinesia in Parkinson’s disease. Pharmacol Rev 65:171–222

    Article  PubMed  CAS  Google Scholar 

  • Jennings KA, Platt NJ, Cragg SJ (2015) The impact of a parkinsonian lesion on dynamic striatal dopamine transmission depends on nicotinic receptor activation. Neurobiol Dis 82:262–268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeon J, Dencker D, Wortwein G, Woldbye DP, Cui Y, Davis AA, Levey AI, Schutz G, Sager TN, Mork A, Li C, Deng CX, Fink-Jensen A, Wess J (2010) A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors. J Neurosci 30:2396–2405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnston TH, Huot P, Fox SH, Koprich JB, Szeliga KT, James JW, Graef JD, Letchworth SR, Jordan KG, Hill MP, Brotchie JM (2013) TC-8831, a nicotinic acetylcholine receptor agonist, reduces l-DOPA-induced dyskinesia in the MPTP macaque. Neuropharmacology 73:337–347

    Article  PubMed  CAS  Google Scholar 

  • Kaiser S, Wonnacott S (2000) alpha-bungarotoxin-sensitive nicotinic receptors indirectly modulate [(3)H]dopamine release in rat striatal slices via glutamate release. Mol Pharmacol 58:312–318

    Article  PubMed  CAS  Google Scholar 

  • Katzenschlager R, Sampaio C, Costa J, Lees A (2003) Anticholinergics for symptomatic management of Parkinson’s disease. Cochrane Database System Rev (2):CD003735

  • Kawaguchi Y (1993) Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci 13:4908–4923

    Article  PubMed  CAS  Google Scholar 

  • Koos T, Tepper JM (2002) Dual cholinergic control of fast-spiking interneurons in the neostriatum. J Neurosci 22:529–535

    Article  PubMed  CAS  Google Scholar 

  • Koranda JL, Cone JJ, McGehee DS, Roitman MF, Beeler JA, Zhuang X (2014) Nicotinic receptors regulate the dynamic range of dopamine release in vivo. J Neurophysiol 111:103–111

    Article  PubMed  CAS  Google Scholar 

  • Kosillo P, Zhang YF, Threlfell S, Cragg SJ (2016) Cortical control of striatal dopamine transmission via striatal cholinergic interneurons. Cereb Cortex 26(11):4160–4169

    Article  PubMed Central  Google Scholar 

  • Kuroiwa M, Hamada M, Hieda E, Shuto T, Sotogaku N, Flajolet M, Snyder GL, Hendrick JP, Fienberg A, Nishi A (2012) Muscarinic receptors acting at pre- and post-synaptic sites differentially regulate dopamine/DARPP-32 signaling in striatonigral and striatopallidal neurons. Neuropharmacology 63:1248–1257

    Article  PubMed  CAS  Google Scholar 

  • Larramendy C, Taravini IR, Saborido MD, Ferrario JE, Murer MG, Gershanik OS (2008) Cabergoline and pramipexole fail to modify already established dyskinesias in an animal model of parkinsonism. Behav Brain Res 194:44–51

    Article  PubMed  CAS  Google Scholar 

  • Lenz JD, Lobo MK (2013) Optogenetic insights into striatal function and behavior. Behav Brain Res 255:44–54

    Article  PubMed  CAS  Google Scholar 

  • Lim SA, Kang UJ, McGehee DS (2014) Striatal cholinergic interneuron regulation and circuit effects. Front Synaptic Neurosci 6:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindgren HS, Ohlin KE, Cenci MA (2009) Differential involvement of D1 and D2 dopamine receptors in l-DOPA-induced angiogenic activity in a rat model of Parkinson’s disease. Neuropsychopharmacology 34:2477–2488

    Article  PubMed  CAS  Google Scholar 

  • Livingstone PD, Wonnacott S (2009) Nicotinic acetylcholine receptors and the ascending dopamine pathways. Biochem Pharmacol 78:744–755

    Article  PubMed  CAS  Google Scholar 

  • Luo R, Janssen MJ, Partridge JG, Vicini S (2013) Direct and GABA-mediated indirect effects of nicotinic ACh receptor agonists on striatal neurones. J Physiol 591:203–217

    Article  PubMed  CAS  Google Scholar 

  • Lv X, Dickerson JW, Rook JM, Lindsley CW, Conn PJ, Xiang Z (2017) M1 muscarinic activation induces long-lasting increase in intrinsic excitability of striatal projection neurons. Neuropharmacology 118:209–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Macintosh FC (1941) The distribution of acetylcholine in the peripheral and the central nervous system. J Physiol 99:436–442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mamaligas AA, Ford CP (2016) Spontaneous synaptic activation of muscarinic receptors by striatal cholinergic neuron firing. Neuron 91:574–586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mamaligas AA, Cai Y, Ford CP (2016) Nicotinic and opioid receptor regulation of striatal dopamine D2-receptor mediated transmission. Sci Rep 6:37834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marchi M, Risso F, Viola C, Cavazzani P, Raiteri M (2002) Direct evidence that release-stimulating alpha7* nicotinic cholinergic receptors are localized on human and rat brain glutamatergic axon terminals. J Neurochem 80:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Marshall DL, Redfern PH, Wonnacott S (1997) Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdialysis: comparison of naive and chronic nicotine-treated rats. J Neurochem 68:1511–1519

    Article  PubMed  CAS  Google Scholar 

  • Matsubayashi H, Amano T, Amano H, Sasa M (2001) Excitation of rat striatal large neurons by dopamine and/or glutamate released from nerve terminals via presynaptic nicotinic receptor (A4beta2 type) stimulation. Jpn J Pharmacol 86:429–436

    Article  PubMed  CAS  Google Scholar 

  • Maurice N, Liberge M, Jaouen F, Ztaou S, Hanini M, Camon J, Deisseroth K, Amalric M, Kerkerian-Le Goff L, Beurrier C (2015) Striatal cholinergic interneurons control motor behavior and basal ganglia function in experimental parkinsonism. Cell Rep 13:657–666

    Article  PubMed  CAS  Google Scholar 

  • McCallum SE, Parameswaran N, Bordia T, McIntosh JM, Grady SR, Quik M (2005) Decrease in alpha3*/alpha6* nicotinic receptors but not nicotine-evoked dopamine release in monkey brain after nigrostriatal damage. Mol Pharmacol 68:737–746

    PubMed  CAS  Google Scholar 

  • McCallum SE, Parameswaran N, Perez XA, Bao S, McIntosh JM, Grady SR, Quik M (2006) Compensation in pre-synaptic dopaminergic function following nigrostriatal damage in primates. J Neurochem 96:960–972

    Article  PubMed  CAS  Google Scholar 

  • Merola A, Rizzi L, Zibetti M, Artusi CA, Montanaro E, Angrisano S, Lanotte M, Rizzone MG, Lopiano L (2014) Medical therapy and subthalamic deep brain stimulation in advanced Parkinson’s disease: a different long-term outcome? J Neurol Neurosurg Psychiatry 85:552–559

    Article  PubMed  Google Scholar 

  • Mesulam MM, Mash D, Hersh L, Bothwell M, Geula C (1992) Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus. J Comp Neurol 323:252–268

    Article  PubMed  CAS  Google Scholar 

  • Millar NS, Gotti C (2009) Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology 56:237–246

    Article  PubMed  CAS  Google Scholar 

  • Nelson AB, Bussert TG, Kreitzer AC, Seal RP (2014a) Striatal cholinergic neurotransmission requires VGLUT3. J Neurosci 34:8772–8777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nelson AB, Hammack N, Yang CF, Shah NM, Seal RP, Kreitzer AC (2014b) Striatal cholinergic interneurons Drive GABA release from dopamine terminals. Neuron 82:63–70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishijima H, Suzuki S, Kon T, Funamizu Y, Ueno T, Haga R, Suzuki C, Arai A, Kimura T, Suzuki C, Meguro R, Miki Y, Yamada J, Migita K, Ichinohe N, Ueno S, Baba M, Tomiyama M (2014) Morphologic changes of dendritic spines of striatal neurons in the levodopa-induced dyskinesia model. Mov Disord 29:336–343

    Article  PubMed  CAS  Google Scholar 

  • Pakhotin P, Bracci E (2007) Cholinergic interneurons control the excitatory input to the striatum. J Neurosci 27:391–400

    Article  PubMed  CAS  Google Scholar 

  • Pavon N, Martin AB, Mendialdua A, Moratalla R (2006) ERK phosphorylation and FosB expression are associated with l-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiat 59:64–74

    Article  PubMed  CAS  Google Scholar 

  • Perez XA (2015) Preclinical evidence for a role of the nicotinic cholinergic system in Parkinson’s disease. Neuropsychol Rev 25:371–383

    Article  PubMed  Google Scholar 

  • Perez XA, Quik M (2011) Focus on alpha4beta2* and alpha6beta2* nAChRs for Parkinson’s disease therapeutics. Mol Cell Pharmacol 3:1–6

    PubMed  PubMed Central  CAS  Google Scholar 

  • Perez XA, Bordia T, McIntosh JM, Grady SR, Quik M (2008) Long-term nicotine treatment differentially regulates striatal alpha6alpha4beta2* and alpha6(nonalpha4)beta2* nAChR expression and function. Mol Pharmacol 74:844–853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez XA, Bordia T, McIntosh JM, Quik M (2010) {Alpha}6{beta}2* and {alpha}4{beta}2* nicotinic receptors both regulate dopamine signaling with increased nigrostriatal damage: relevance to Parkinson’s disease. Mol Pharmacol 78:971–980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez X, Ly J, McIntosh JM, Quik M (2012) Chronic nicotine exposure depresses dopamine release in nonhuman primate nucleus accumbens. J Pharmacol Exp Ther 342:335–344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez XA, McIntosh JM, Quik M (2013) Long-term nicotine treatment down-regulates alpha6beta2* nicotinic receptor expression and function in nucleus accumbens. J Neurochem 127:762–771

    Article  PubMed  CAS  Google Scholar 

  • Perez XA, Zhang D, Bordia T, Quik M (2017) Striatal D1 medium spiny neuron activation induces dyskinesias in parkinsonian mice. Mov Disord 32(4):538–548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez-Rosello T, Figueroa A, Salgado H, Vilchis C, Tecuapetla F, Guzman JN, Galarraga E, Bargas J (2005) Cholinergic control of firing pattern and neurotransmission in rat neostriatal projection neurons: role of CaV2.1 and CaV2.2 Ca2+ channels. J Neurophysiol 93:2507–2519

    Article  PubMed  CAS  Google Scholar 

  • Quik M, Wonnacott S (2011) {alpha}6{beta}2* and {alpha}4{beta}2* nicotinic acetylcholine receptors as drug targets for Parkinson’s disease. Pharmacol Rev 63:938–966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quik M, Sum JD, Whiteaker P, McCallum SE, Marks MJ, Musachio J, McIntosh JM, Collins AC, Grady SR (2003) Differential declines in striatal nicotinic receptor subtype function after nigrostriatal damage in mice. Mol Pharmacol 63:1169–1179

    Article  PubMed  CAS  Google Scholar 

  • Quik M, Chen L, Parameswaran N, Xie X, Langston JW, McCallum SE (2006) Chronic oral nicotine normalizes dopaminergic function and synaptic plasticity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned primates. J Neurosci 26:4681–4689

    Article  PubMed  CAS  Google Scholar 

  • Quik M, Cox H, Parameswaran N, O’Leary K, Langston JW, Di Monte D (2007) Nicotine reduces levodopa-induced dyskinesias in lesioned monkeys. Ann Neurol 62:588–596

    Article  PubMed  CAS  Google Scholar 

  • Quik M, Perez XA, Grady SR (2011) Role of alpha6 nicotinic receptors in CNS dopaminergic function: relevance to addiction and neurological disorders. Biochem Pharmacol 82:873–882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quik M, Park KM, Hrachova M, Mallela A, Huang LZ, McIntosh JM, Grady SR (2012a) Role for alpha6 nicotinic receptors in l-dopa-induced dyskinesias in parkinsonian mice. Neuropharmacology 63:450–459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quik M, Perez XA, Bordia T (2012b) Nicotine as a potential neuroprotective agent for Parkinson’s disease. Mov Disord 27:947–957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quik M, Campos C, Bordia T, Strachan JP, Zhang J, McIntosh JM, Letchworth S, Jordan K (2013a) alpha4beta2 Nicotinic receptors play a role in the nAChR-mediated decline in l-dopa-induced dyskinesias in parkinsonian rats. Neuropharmacology 71:191–203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quik M, Campos C, Grady SR (2013b) Multiple CNS nicotinic receptors mediate l-dopa-induced dyskinesias: studies with parkinsonian nicotinic receptor knockout mice. Biochem Pharmacol 86:1153–1162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quik M, Mallela A, Chin M, McIntosh JM, Perez XA, Bordia T (2013c) Nicotine-mediated improvement in l-dopa-induced dyskinesias in MPTP-lesioned monkeys is dependent on dopamine nerve terminal function. Neurobiol Dis 50:30–41

    Article  PubMed  CAS  Google Scholar 

  • Quik M, Mallela A, Ly J, Zhang D (2013d) Nicotine reduces established levodopa-induced dyskinesias in a monkey model of Parkinson’s disease. Mov Disord 28:1398–1406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quik M, Zhang D, Perez XA, Bordia T (2014) Role for the nicotinic cholinergic system in movement disorders; therapeutic implications. Pharmacol Ther 144(1):50–59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quik M, Bordia T, Zhang D, Perez XA (2015a) Nicotine and nicotinic receptor drugs: potential for Parkinson’s disease and drug-induced movement disorders. Int Rev Neurobiol 124:247–271

    Article  PubMed  Google Scholar 

  • Quik M, Zhang D, McGregor M, Bordia T (2015b) Alpha7 nicotinic receptors as therapeutic targets for Parkinson’s disease. Biochem Pharmacol 97:399–407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quinn NP (1998) Classification of fluctuations in patients with Parkinson’s disease. Neurology 51:S25–S29

    Article  PubMed  CAS  Google Scholar 

  • Quinn N, Marsden CD, Parkes JD (1982) Complicated response fluctuations in Parkinson’s disease: response to intravenous infusion of levodopa. Lancet 2:412–415

    Article  PubMed  CAS  Google Scholar 

  • Raz A, Feingold A, Zelanskaya V, Vaadia E, Bergman H (1996) Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates. J Neurophysiol 76:2083–2088

    Article  PubMed  CAS  Google Scholar 

  • Revy D, Jaouen F, Salin P, Melon C, Chabbert D, Tafi E, Concetta L, Langa F, Amalric M, Kerkerian-Le Goff L, Marie H, Beurrier C (2014) Cellular and Behavioral Outcomes of Dorsal Striatonigral Neuron Ablation: New Insights into Striatal Functions. Neuropsychopharmacology 39(11):2662–2672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rice ME, Cragg SJ (2004) Nicotine amplifies reward-related dopamine signals in striatum. Nat Neurosci 7:583–584

    Article  PubMed  CAS  Google Scholar 

  • Rizzone MG, Fasano A, Daniele A, Zibetti M, Merola A, Rizzi L, Piano C, Piccininni C, Romito LM, Lopiano L, Albanese A (2014) Long-term outcome of subthalamic nucleus DBS in Parkinson’s disease: from the advanced phase towards the late stage of the disease? Parkinsonism Relat Disord 20:376–381

    Article  PubMed  CAS  Google Scholar 

  • Salin P, Lopez IP, Kachidian P, Barroso-Chinea P, Rico AJ, Gomez-Bautista V, Coulon P, Kerkerian-Le Goff L, Lanciego JL (2009) Changes to interneuron-driven striatal microcircuits in a rat model of Parkinson’s disease. Neurobiol Dis 34:545–552

    Article  PubMed  CAS  Google Scholar 

  • Salminen O, Murphy KL, McIntosh JM, Drago J, Marks MJ, Collins AC, Grady SR (2004) Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Mol Pharmacol 65:1526–1535

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer E, Pilotto A, Berg D (2014) Pharmacological strategies for the management of levodopa-induced dyskinesia in patients with Parkinson’s disease. CNS Drugs 28:1155–1184

    Article  PubMed  CAS  Google Scholar 

  • Shen W, Tian X, Day M, Ulrich S, Tkatch T, Nathanson NM, Surmeier DJ (2007) Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nat Neurosci 10:1458–1466

    Article  PubMed  CAS  Google Scholar 

  • Shen W, Plotkin JL, Francardo V, Ko WK, Xie Z, Li Q, Fieblinger T, Wess J, Neubig RR, Lindsley CW, Conn PJ, Greengard P, Bezard E, Cenci MA, Surmeier DJ (2015) M4 muscarinic receptor signaling ameliorates striatal plasticity deficits in models of l-DOPA-induced dyskinesia. Neuron 88:762–773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith AD, Bolam JP (1990) The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 13:259–265

    Article  PubMed  CAS  Google Scholar 

  • Solis O, Garcia-Montes JR, Gonzalez-Granillo A, Xu M, Moratalla R (2015) Dopamine D3 receptor modulates l-DOPA-induced dyskinesia by targeting D1 receptor-mediated striatal signaling. Cereb Cortex 27(1):435–446

    PubMed Central  Google Scholar 

  • Suarez LM, Solis O, Aguado C, Lujan R, Moratalla R (2016) l-DOPA oppositely regulates synaptic strength and spine morphology in D1 and D2 striatal projection neurons in dyskinesia. Cereb Cortex 26(11):4253–4264

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Takada Y, Nagai N, Urano T, Takada A (1998) Nicotine increases stress-induced serotonin release by stimulating nicotinic acetylcholine receptor in rat striatum. Synapse 28:212–219

    Article  PubMed  CAS  Google Scholar 

  • Tambasco N, Simoni S, Marsili E, Sacchini E, Murasecco D, Cardaioli G, Rossi A, Calabresi P (2012) Clinical aspects and management of levodopa-induced dyskinesia. Parkinsons Dis 2012:745947

    PubMed  PubMed Central  Google Scholar 

  • Taylor JL, Bishop C, Walker PD (2005) Dopamine D1 and D2 receptor contributions to l-DOPA-induced dyskinesia in the dopamine-depleted rat. Pharmacol Biochem Behav 81:887–893

    Article  PubMed  CAS  Google Scholar 

  • Threlfell S, Clements MA, Khodai T, Pienaar IS, Exley R, Wess J, Cragg SJ (2010) Striatal muscarinic receptors promote activity dependence of dopamine transmission via distinct receptor subtypes on cholinergic interneurons in ventral versus dorsal striatum. J Neurosci 30:3398–3408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ (2012) Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75:58–64

    Article  PubMed  CAS  Google Scholar 

  • Tubert C, Taravini IR, Flores-Barrera E, Sanchez GM, Prost MA, Avale ME, Tseng KY, Rela L, Murer MG (2016) Decrease of a current mediated by Kv1.3 channels causes striatal cholinergic interneuron hyperexcitability in experimental parkinsonism. Cell Rep 16:2749–2762

    Article  PubMed  CAS  Google Scholar 

  • van Vulpen EH, van der Kooy D (1998) Striatal cholinergic interneurons: birthdates predict compartmental localization. Brain Res Dev Brain Res 109:51–58

    Article  PubMed  Google Scholar 

  • Wang Z, Kai L, Day M, Ronesi J, Yin HH, Ding J, Tkatch T, Lovinger DM, Surmeier DJ (2006) Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron 50:443–452

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Shang S, Kang X, Teng S, Zhu F, Liu B, Wu Q, Li M, Liu W, Xu H, Zhou L, Jiao R, Dou H, Zuo P, Zhang X, Zheng L, Wang S, Wang C, Zhou Z (2014) Modulation of dopamine release in the striatum by physiologically relevant levels of nicotine. Nat Commun 5:3925

    Article  PubMed  CAS  Google Scholar 

  • Westin JE, Vercammen L, Strome EM, Konradi C, Cenci MA (2007) Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of l-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biol Psychiat 62:800–810

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ, Goldberg JA (2006) Origin of the slow afterhyperpolarization and slow rhythmic bursting in striatal cholinergic interneurons. J Neurophysiol 95:196–204

    Article  PubMed  Google Scholar 

  • Wilson CJ, Chang HT, Kitai ST (1990) Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J Neurosci 10:508–519

    Article  PubMed  CAS  Google Scholar 

  • Won L, Ding Y, Singh P, Kang UJ (2014) Striatal cholinergic cell ablation attenuates l-DOPA induced dyskinesia in Parkinsonian mice. J Neurosci 34:3090–3094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wonnacott S, Kaiser S, Mogg A, Soliakov L, Jones IW (2000) Presynaptic nicotinic receptors modulating dopamine release in the rat striatum. Eur J Pharmacol 393:51–58

    Article  PubMed  CAS  Google Scholar 

  • Woolf NJ, Butcher LL (1981) Cholinergic neurons in the caudate-putamen complex proper are intrinsically organized: a combined Evans blue and acetylcholinesterase analysis. Brain Res Bull 7:487–507

    Article  PubMed  CAS  Google Scholar 

  • Xiang Z, Thompson AD, Jones CK, Lindsley CW, Conn PJ (2012) Roles of the M1 muscarinic acetylcholine receptor subtype in the regulation of basal ganglia function and implications for the treatment of Parkinson’s disease. J Pharmacol Exp Ther 340:595–603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao C, Nashmi R, McKinney S, Cai H, McIntosh JM, Lester HA (2009) Chronic nicotine selectively enhances alpha4beta2* nicotinic acetylcholine receptors in the nigrostriatal dopamine pathway. J Neurosci 29:12428–12439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan Z, Surmeier DJ (1996) Muscarinic (m2/m4) receptors reduce N- and P-type Ca2+ currents in rat neostriatal cholinergic interneurons through a fast, membrane-delimited, G-protein pathway. J Neurosci 16:2592–2604

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Sulzer D (2004) Frequency-dependent modulation of dopamine release by nicotine. Nat Neurosci 7:581–582

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Yamada M, Gomeza J, Basile AS, Wess J (2002) Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1–M5 muscarinic receptor knock-out mice. J Neurosci 22:6347–6352

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Doyon WM, Clark JJ, Phillips PE, Dani JA (2009) Controls of tonic and phasic dopamine transmission in the dorsal and ventral striatum. Mol Pharmacol 76:396–404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Dong Y, Doyon WM, Dani JA (2012) Withdrawal from chronic nicotine exposure alters dopamine signaling dynamics in the nucleus accumbens. Biol Psychiat 71:184–191

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Mallela A, Sohn D, Carroll FI, Bencherif M, Letchworth S, Quik M (2013) Nicotinic receptor agonists reduce l-DOPA-induced dyskinesias in a monkey model of Parkinson’s disease. J Pharmacol Exp Ther 347:225–234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang D, Bordia T, McGregor M, McIntosh JM, Decker MW, Quik M (2014a) ABT-089 and ABT-894 reduce levodopa-induced dyskinesias in a monkey model of Parkinson’s disease. Mov Disord 29:508–517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang D, McGregor M, Decker MW, Quik M (2014b) The alpha7 nicotinic receptor agonist ABT-107 decreases l-Dopa-induced dyskinesias in parkinsonian monkeys. J Pharmacol Exp Ther 351:25–32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang D, McGregor M, Bordia T, Perez XA, McIntosh JM, Decker MW, Quik M (2015) alpha7 nicotinic receptor agonists reduce levodopa-induced dyskinesias with severe nigrostriatal damage. Mov Disord 30:1901–1911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou FM, Liang Y, Dani JA (2001) Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 4:1224–1229

    Article  PubMed  CAS  Google Scholar 

  • Zhou FM, Wilson CJ, Dani JA (2002) Cholinergic interneuron characteristics and nicotinic properties in the striatum. J Neurobiol 53:590–605

    Article  PubMed  CAS  Google Scholar 

  • Ztaou S, Maurice N, Camon J, Guiraudie-Capraz G, Kerkerian-Le Goff L, Beurrier C, Liberge M, Amalric M (2016) Involvement of striatal cholinergic interneurons and M1 and M4 muscarinic receptors in motor symptoms of Parkinson’s disease. J Neurosci 36:9161–9172

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding provided by NIH Grant R56NS095965-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. A. Perez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez, X.A., Bordia, T. & Quik, M. The striatal cholinergic system in l-dopa-induced dyskinesias. J Neural Transm 125, 1251–1262 (2018). https://doi.org/10.1007/s00702-018-1845-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-018-1845-9

Keywords

Navigation